
Journal of

Clinical Medicine

Article

Evidence of Mitochondrial Dysfunction in
Fibromyalgia: Deviating Muscle Energy Metabolism
Detected Using Microdialysis and
Magnetic Resonance

Björn Gerdle 1,2,* , Bijar Ghafouri 1 , Eva Lund 3, Ann Bengtsson 1, Peter Lundberg 2,4 ,
Helene van Ettinger-Veenstra 1,2, Olof Dahlqvist Leinhard 2,4,5 and Mikael Fredrik Forsgren 2,4,5

1 Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences,
Linköping University, SE 581 83 Linköping, Sweden; bijar.ghafouri@liu.se (B.G.);
annbengtsson@yahoo.se (A.B.); helene.veenstra@liu.se (H.v.E.-V.)

2 Center for Medical Image Science and Visualization (CMIV), Linköping University,
SE 581 83 Linköping, Sweden; peter.lundberg@liu.se (P.L.); olof.dahlqvist.leinhard@liu.se (O.D.L.);
mikael.f.forsgren@liu.se (M.F.F.)

3 Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University,
SE 581 83 Linköping, Sweden; eva.lund@liu.se

4 Radiation Physics, Department of Health, Medicine and Caring Sciences,
SE 581 83 Linköping University & Department of Radiation Physics, UHL, SE 581 85 Linköping, Sweden

5 AMRA Medical AB, SE 582 22 Linköping, Sweden
* Correspondence: bjorn.gerdle@liu.se; Tel.: +46-763927191

Received: 10 October 2020; Accepted: 30 October 2020; Published: 31 October 2020
����������
�������

Abstract: In fibromyalgia (FM) muscle metabolism, studies are sparse and conflicting associations
have been found between muscle metabolism and pain aspects. This study compared alterations
in metabolic substances and blood flow in erector spinae and trapezius of FM patients and healthy
controls. FM patients (n = 33) and healthy controls (n = 31) underwent a clinical examination
that included pressure pain thresholds and physical tests, completion of a health questionnaire,
participation in microdialysis investigations of the etrapezius and erector spinae muscles, and also
underwent phosphorus-31 magnetic resonance spectroscopy of the erector spinae muscle. At the
baseline, FM had significantly higher levels of pyruvate in both muscles. Significantly lower
concentrations of phosphocreatine (PCr) and nucleotide triphosphate (mainly adenosine triphosphate)
in erector spinae were found in FM. Blood flow in erector spinae was significantly lower in FM.
Significant associations between metabolic variables and pain aspects (pain intensity and pressure
pain threshold PPT) were found in FM. Our results suggest that FM has mitochondrial dysfunction,
although it is unclear whether inactivity, obesity, aging, and pain are causes of, the results of,
or coincidental to the mitochondrial dysfunction. The significant regressions of pain intensity and
PPT in FM agree with other studies reporting associations between peripheral biological factors and
pain aspects.

Keywords: fibromyalgia; chronic pain; muscle; microdialysis; ATP; PCr; magnetic resonance
spectroscopy; magnetic resonance imaging

1. Introduction

Pain arises in the brain because of influences from neurobiological, psychological,
and social/contextual aspects and their complex interactions. Fibromyalgia (FM) is characterized
by chronic widespread pain and often generalized hyperalgesia/allodynia. Depending on the

J. Clin. Med. 2020, 9, 3527; doi:10.3390/jcm9113527 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-4316-1264
https://orcid.org/0000-0002-6396-5104
https://orcid.org/0000-0001-8661-2232
http://www.mdpi.com/2077-0383/9/11/3527?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9113527
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 3527 2 of 26

diagnostic criteria, FM has a prevalence of 2–8%. FM is associated with high comorbidity for
other chronic pain conditions and somatic and psychological symptoms/disorders. No definite
pathophysiology has been established. Imaging techniques have challenged previous ideas about
the peripheral origin of FM and have provided evidence for altered central nervous system (CNS)
nociceptive/pain processing and morphology in FM. However, recent studies have reported both central
alterations and peripheral alterations (e.g., systemic low-grade inflammation and nociceptor/muscle
alterations) [1–5]. Understanding these complicated peripheral and central processes and their
interactions are fundamental for developing treatments.

In real life muscle work, several fuels are used to produce adenosine triphosphates (ATPs),
the cell’s energy currency [6]. The fuels—mainly carbohydrates (plasma glucose and muscle glycogen)
and fats (plasma free fatty acids and muscle triglycerides), but also amino acids—are used by muscle
cells to produce ATPs [6–8].

To analyze muscle metabolism, several FM studies have used microdialysis (MD), an in vivo
technique, to collect substances from the muscle interstitium. Two MD studies of FM reported increased
concentrations of lactate and/or pyruvate (i.e., products of glycolysis) in the trapezius [9,10]. Another
FM study found that the concentrations of both lactate and pyruvate were significantly increased
in the vastus lateralis [11]. One study of the trapezius found significant associations between these
substances and pain intensity and PPT [10]; however, the two other studies failed to establish such
significant correlations [9,11].

31P magnetic resonance spectroscopy (31P-MRS) can be used to non-invasively investigate
phosphorous metabolism, carbohydrate metabolism, and intracellular pH in muscles [12]
(i.e., mitochondrial function [13]). This method has been used by several FM studies, but findings are
inconsistent (see Gerdle et al. [14]). This inconsistency is probably due to differences in the conditions
investigated, differences in the type of muscle investigated, and whether absolute or relative measures
of metabolism were used. The only two studies that determined absolute muscle concentrations of
adenosine triphosphate (ATP) and phosphocreatine (also known as creatine phosphate (CP)) (PCr) in FM
reported significantly lower levels in the quadriceps [14,15]. One of these studies found an association
between ATP concentration and pain intensity just above the significance threshold (p = 0.057) [15],
whereas the other study found no correlation between ATP and PCR and pain intensity [14].

This study is motivated by the fact that muscle metabolism is poorly investigated in FM patients,
many FM patients have reported that their pain condition started and persists in neck-shoulder
muscles and low back muscles, and that findings from previous studies are inconsistent with respect to
FM associations with central factors such as pain intensity and PPT. To address these shortcomings,
we compared alterations in metabolic status (including blood flow) in the erector spinae and trapezius
of female FM patients and matched healthy controls. In addition, we investigated to what extent muscle
metabolic status correlated with PPT, pain intensity, and physical performance. Thus, this relatively
large study using different methods to capture the muscle metabolic status has potential to shed further
light on pathophysiology in FM (i.e., possible mitochondrial involvement). Moreover, this study
applied advanced multivariate methods, which can determine is muscle metabolic alterations are
associated with pain aspects in FM with better precision than earlier studies.

2. Subjects and Methods

2.1. Subjects

This large-scale investigation of FM included 33 female FM patients and 31 age-matched female
controls (CON) between 22 and 56 years old. The CON group was recruited through advertisements
in newspapers, and the FM group was recruited from former patients at the Pain and Rehabilitation
Center at the University Hospital in Linköping. The number of subjects was determined using Power
and Sample Size Calculation ver 3.0.2 [16] based on results from both microdialysis (the concentration
of lactate according to Rosendal et al. [17]) and from ATP concentration obtained from spectroscopy
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of the vastus lateralis (Gerdle et al. [14]). Both analyses indicated that 25 subjects in each group
were necessary. Of the 64 subjects recruited to this study, 62 participated in the 31P-MRS part and
57 participated in the MD part of the study. Details on the inclusion and exclusion criteria as well as
clinical examination are given below.

The study was granted ethical clearances by Linköping University Ethics Committee
(Dnr: 2016/239-31). All participants gave their written informed consent, and the study was performed
in accordance with the Helsinki Declaration.

2.2. Procedures

At the first visit, the subjects underwent a clinical examination that included pain threshold
tests and physical tests. In addition, the subjects completed a health questionnaire that covered
aspects of pain, health, disability, demographic data, and psychological characteristics. At the second
visit, the subjects underwent MD of the trapezius and the erector spinae muscles. At the third visit,
spectroscopy was used to evaluate the subjects’ erector spinae.

2.3. Clinical Examinations

Both FM patients and controls underwent a brief clinical examination of the heart and lungs,
which included recording diastolic and systolic blood pressure (mm Hg) after two minutes of rest.
In addition, their weight (kg) and height (m) were recorded. Using these measurements, Body Mass
Index (BMI, kg/m2) was calculated and classified according to the World Health Organization (WHO)
criteria: <18.5 = underweight; 18.5–24.9 = normal range; 25.0–29.9 = overweight; 30.0–34.9 = obesity;
and ≥35.0 = severe obesity. The clinical examination ensured that the controls were healthy with
respect to anamnesis for rheumatic diseases, neurological diseases, diabetes, cardio-vascular diseases,
psychiatric diseases, and high alcohol consumption (i.e., Alcohol Use Disorders Identification Test
(AUDIT) >6 according to the recommendations for women).

The clinical examination of the patients ensured that they met the criteria for FM according to
the 1990 criteria from the American College of Rheumatology (ACR) [18] and that they were not
abusing alcohol (i.e., high alcohol consumption) according to AUDIT. The number of tender points
were registered both in FM and in CON. The ACR criteria from 1990 is based on anamnestic reports
and semi-objective examinations of hyperalgesia/allodynia (tender points). Newer criteria (2010/2011
and 2016) based on anamnestic reports have been established [19–21]. As we wanted to compare our
study with earlier studies, we chose the ACR criteria from 1990.

2.3.1. Pressure Pain Thresholds

Pressure pain thresholds (PPT) were determined using a manual pressure algometer (Somedic
AB, Sweden) mounted with a probe (contact area of 1 cm2) on the muscle belly (for details, see [22,23]).
The erector spinae, tibialis anterior, and trapezius were investigated bilaterally. The pressure was
increased by 30 kPa/s until the subject perceived pain, indicated by pushing a stop button or until the
maximum threshold of 600 kPa was reached. The PPT for each anatomical location was defined as the
mean of two trials obtained with a minimum interval of 30 s. We used the mean of the six anatomical
locations (PPT-tot) as well as PPT for the trapezius and erector spinae (i.e., the muscles that were
assayed using MD).

2.3.2. Physical tests

Hand function

Grip force (N) was measured using Grippit (AB Detektor, Gothenburg, Sweden). Peak value
(Grip force-max), average value (Grip force-average), and 10-s value (Grip force-endur) were recorded
for 10 s for the dominant hand (for details, see our earlier study [14]). The test-retest precision has been
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shown to be high for peak and average values [24]. Mean values of dominant and non-dominant sides
are presented.

Aerobic fitness test

The subjects were given a submaximal cycle ergometer aerobic fitness test to determine
their MaxVO2 [25].

Lower extremity muscle performance

Lower extremity muscle performance was measured using the timed-stands test (TST)
(i.e., the number of times the subjects stand up and sit down from a standard chair for 30 s [26,27]).

2.4. Questionnaire

All subjects answered a questionnaire covering pain, health, distress, disability, background data,
and psychological aspects.

2.4.1. Pain aspects

Patients reported the duration of FM (years). Global pain intensity the previous seven days was
reported using a numeric rating scale (NRS) (0 = no pain and 10 = worst possible pain).

Pain Sensitivity Questionnaire (PSQ): Pain sensitivity was assessed using the Pain Sensitivity
Questionnaire (PSQ). The PSQ consists of 17 items that describe daily life situations. For each
situation, the subjects rate how intense the pain (not aversiveness or distress) would be for them
(0 = not painful at all and 10 = worst pain imaginable) [28]. Of the 17 situations, 14 are normally
considered painful (e.g., cold, sharp, and blunt pain) and the other three are not (e.g., taking a warm
shower). The mean of the 14 painful items was calculated. The PSQ was translated into Swedish
using an iterative forward-backward process [29]. Although the Swedish version of the PSQ has not
been psychometrically evaluated, translations to other languages have shown satisfactory statistical
properties [30–33].

2.4.2. Psychological distress

Hospital Anxiety and Depression Scale (HADS): The Hospital Anxiety and Depression Scale
(HADS) is used frequently in clinical practice and research because of its good psychometric
characteristics [34,35]. HADS includes two subscales: HADS-depression and HADS-anxiety. Both these
subscales have seven items with a scoring range between 0 and 21. A lower score indicates a lower
possibility of anxiety or depression. In this study, the total score (i.e., the sum of the two subscales)
was used to capture psychological distress (0–42) [36].

Pain Catastrophizing Scale (PCS): The Pain Catastrophizing Scale (PCS) includes 13 items with
five answering alternatives. The PCS captures different dimensions of catastrophizing such as
rumination, magnification, and helplessness [37,38]. In the present study, the total PCS (PCS-total)
was used; the maximum score was 52.

Insomnia Severity Index: The Insomnia Severity Index (ISI), which has good internal consistency,
captures the severity and impact of insomnia symptoms [39,40]. The seven items of the ISI are rated on
a five-point Likert scale (0–4) and a total score is calculated (max = 28).

2.4.3. Disability

Pain Disability Index (PDI): The Pain Disability Index (PDI), which measures the impact that pain
has on a person’s ability to participate in essential life activities [41,42], consists of seven items and
every item is rated on a 10-point scale. The items assess the perception of the specific impact of pain on
disability that may preclude normal or desired performance of a wide range of functions such as sex,
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work, daily activities, family and social activities, and life support (sleeping, breathing, and eating).
The ratings of these seven items are summed; that is, the PDI score ranges between 0 and 70.

2.4.4. Health aspects

The European Quality of Life Instrument: The European Quality of Life Instrument (EQ-5D), which
captures a patient’s perceived state of health [43,44], consists of two parts. The first part is an index
based upon five dimensions. In this study, however, we only used the second part: the self-estimation
of today’s health according to a 100-point thermometer-like scale (EQ-VAS) with defined end points
(high values indicate good health and low values indicate bad health).

2.5. Microdialysis and Sample Preparation

Microdialysis (MD) mimics a capillary blood vessel by perfusing a thin dialysis tube implanted
in the tissue with a physiological saline solution. By simple diffusion, molecules cross the dialysis
membrane along the concentration gradient and the obtained dialysate can be analyzed chemically. MD
allows for continuous sampling of compounds in the interstitial space of muscle, where the nociceptors
are located, and provides information of local biochemical changes before such compounds are diluted
and cleared by the circulatory system. The subjects were instructed not to perform strenuous exercise
two days before the study and not to drink any beverages with caffeine nor smoke the day of the study.
In addition, they were asked not to take paracetamol-medication two days before and Nonsteroidal
anti-inflammatory drug (NSAID) medication one week before the MD sessions. All participants
indicated that they had followed the instructions. The skin and the subcutaneous tissues above the
entry point of the catheter were anesthetized with a local injection (0.5 mL) of lidocaine (Xylocain®
20 mg/mL, AstraZeneca, Södertälje, Sweden) without adrenaline. Care was taken not to anesthetize
the underlying muscle. A commercially available MD catheter (CMA 60; CMA Microdialysis AB,
Solna, Sweden) was inserted parallel to the muscle fibers of the trapezius muscle and the erector spinae
muscle. This catheter had a cut-off of 20 kDa, a membrane length of 30 mm, and a diameter of 0.5 mm.
Typically, a brief involuntary contraction and change of resistance were perceived when the tip of the
insertion needle of the catheter entered the fascia and the muscle. Before the insertion of the catheter,
ultrasound measurements determined the distance between the skin and the muscle. In the trapezius,
the catheter was inserted in the middle third of the upper part of the trapezius muscle lateral to medial.
Using the landmarks presented by the project Surface EMG for non-invasive assessment of muscles
(SENIAM), we identified the midpoint of the line between the spine of the seventh cervical vertebra and
the acromion. This point was defined as the midpoint of the descending trapezius [45]. For the erector
spinae (ES) muscle, the crista iliaca was identified and the catheter was inserted 2–3 cm above this level
at the most prominent part of the erector spine in the caudal direction. The catheters were perfused
with a high-precision syringe pump (CMA 107; CMA/Microdialysis AB, Stockholm, Sweden) at a rate
of 5 µL/min with a Ringer acetate solution (Fresenius Kabi AB, Uppsala, Sweden) containing 3-mM
glucose, 0.5-mM lactate, and 3.0-µM [14C]-lactate (specific activity: 5.81 GBq/mmol, GE Healthcare,
Buckinghamshire, UK). This procedure was performed according to the internal reference method [46].
Furthermore, nutritive muscle blood flow was estimated by the MD ethanol technique [47] using 3H2O
instead of ethanol [48]. In addition, 0.3-µl/mL 3H2O (specific activity: 37 MBq/g; PerkinElmer Life
Sciences, Boston, MA, USA) was added to the perfusate. The ratio of 3H2O in the dialysate and the
perfusate (the outflow-to-inflow ratio) varies inversely with the local blood flow in the tissue [47,48].
In the present study, this ratio was inverted to indicate the blood flow and facilitate the interpretations.

Samples from both catheters were obtained every 20 min for the 220 min of testing and the samples
were kept on ice throughout the MD experiment. The samples were then stored as aliquots at −70 ◦C
until analysis. All vials were weighed before the experiment and after each 20-min interval to confirm
that sampling and fluid recovery (FR) were working according to the perfusion rate set. Vials with
visible signs of hemolysis were discarded.
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Immediately after the insertion of catheters, participants rested comfortably in an armchair for
120 min (i.e., the trauma period) to allow the tissue to recover from possible changes in the interstitial
environment induced. After the trauma period, participants continued to rest for 20 min, the baseline
period (denoted 140 min). The baseline period was followed by a 20-min period of standardized
repetitive low-force exercise of the neck-shoulder muscles sitting in a chair performed on a pegboard
(denoted 160 min). The experiment ended with a recovery period of 60 min, during which participants
rested in the armchair.

During the MD session, the subjects rated their pain intensity in the trapezius and erector spinae
taken together from the most painful side (FM) or the dominant side (CON) every 20 min using an
NRS (see above).

Analyses of metabolites: The dialysates gathered from each time point were thawed and
centrifugalized. Next, the dialysates were analyzed for the interstitial concentrations of pyruvate,
lactate, glutamate, glycerol, and glucose with a ISCUSSflex Analyzer (CMA Microdialysis, Solna,
Sweden; standard range). The detection intervals used were as follows: 0.1–12 mmol L−1 for lactate;
10–1500 µmol L−1 for pyruvate; 1.0–150 µmol L−1 for glutamate; 0.1–25 mmol L−1 for glucose;
and 10–1500 mmol L−1 for glycerol.

Relative recovery (RR) measurements: A 5-µL dialysate or perfusate was pipetted into a counting
vial containing 3-mL scintillation fluid (High-flash Point, Universal LSC-Cocktail, ULTIMA GOLD™,
PerkinElmer, Inc., MA, USA) and vortexed. β-counting was performed using a liquid scintillation
counter (Beckman LS 6000TA, Beckman instruments, Inc., Fullerton, CA, USA). RR was calculated as
(dpmp – dpmd)/dpmp, where dpmp and dpmd are disintegrations per minute in the perfusate and the
dialysate, respectively.

Variables from MD: The MD investigations revealed blood flow, pain intensity, concentrations
of the five metabolites at baseline (140 min) and after working the trapezius for 20 min (160 min),
the mean value of the time points from baseline to the end of the recovery (140–220 min), and the
difference between the 160 min and 140 min registrations/concentrations. In addition, pain intensity
was recorded for each catheter insertion.

2.6. Magnetic Resonance Spectroscopy of Erector Spinae

31P-MRS: 31P-MRS of erector spinae was acquired with a Philips Ingenia 3 Tesla MR-scanner.
Spectroscopic measurements were performed using a manufacturer-provided 31P transmit-receive
surface coil with a diameter of 14 cm. Spectra were acquired using a 42 ◦C block pulse for the spin
excitation, 15 s repetition time (TR), 153.4 µs echo time (TE), 3 kHz bandwidth, 2048 datapoints,
16 averages, and two dummy scans.

A custom-built platform allowed the subjects to be examined in a supine head-first position while
having both the MRS-coil as well as a cylindrical (r = 50 mm, h = 80 mm) external reference filled
with 85 mM dimethyl methylphosphonate (DMMP) placed underneath the subject’s spinal erectors
(Figure 1). 31P-MRS Processing: For post-processing of the 31P-MRS data, jMRUI [49] was used with
the AMARES algorithm in combination with prior knowledge [50] for relative quantification of the
resonances. Phosphocreatine (PCr) was used as a chemical-shift reference assigned to the standard
chemical shift of −2.35 ppm, and other assignments were obtained from the literature as previously
described [14]. Assignments are shown for the FM and CON groups in Figure 2.

In short, phosphomonoesters (PME) represented a combined signal from phosphoethanolamine
(PEth) and phosphocholine (PCho); inorganic phosphate (Pi) and PCr were all defined as singlets
in jMRUI. The phosphodiester (PDE) resonance represented glycerophosphoetanolamine (GPEth)
and glycerophosphocholine (GPCho). In addition, a resonance corresponding to NAD(H) was also
observed. Finally, the nucleotide triphosphate (NTP-Mg or NTP for short, mainly composed of ATP
saturated with Mg2+ [Mg-ATP]) resonances were assigned and interpreted as α-,β-, and γ-NTP-Mg as
previously reported [14]. pH was estimated in the spectra using the modified Henderson–Hasselbach
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equation to assess the chemical shift between Pi and PCr (where pKA = 6.77, δHA = 3.23 ppm,
and δA = 5.70 ppm) as described previously [51] using the built in functionality in jMRUI.
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Figure 1. Experimental setup for measuring phosphorus-31 magnetic resonance spectroscopy (31P MRS)
at 3 T, within the spinal erectors. A custom platform was built (striped arrow) to fit on the scanner table.
This platform allowed the participants to lie flat on their backs with the phosphorus transmit/receive coil
lowered into the platform (white arrow). Underneath the coil, a cavity housed the external cylindrical
reference. Spaces were also made for the tuning and matching control rods (black arrow).

31P-MRS Signal Processing: To correct for relaxation differences of the resonances, each quantized
resonance was corrected according to Equation (1):

correction f actor = 1

1−Exp
(
−TR
T1

) 1

Exp
(
−TE
T2

) , (1)

where TR and TE are specific to the 31P-MRS acquisition protocol and T1 and T2 are relaxation times of
the resonances being corrected. The relaxation times were obtained from the literature [52], assuming
β-NTP and PME have similar T2 characteristics as α-NTP and PDE, respectively.

Concentrations of NTP, PCr, and Pi were estimated by defining a corrective factor based on the
external DMMP reference as described previously [14]. During the study, the scanner required a major
software upgrade and the 31P-coil, which was broken during the data collection phase, resulted in an
increased signal-to-noise ratio (SNR) that had to be dealt with. For that reason, a correction factor for
each set of software version and coil was implemented. Figure S1 shows the raw SNR of the external
DMMP reference as well as the PCr for each subject before and after applying the correction for the
upgraded scanner software and the new coil. In addition, ratios of the phosphorous metabolites were
also calculated. Hence, the following spectroscopy variables were determined: PCr (mM), Pi (mM),
NTP (mainly ATP-Mg; in the following labelled ATP) (mM), pH, and the ratios ATP/Ptot, PCr/Ptot,
Pi/Ptot, ATP/PCr, and Pi/PCr.



J. Clin. Med. 2020, 9, 3527 8 of 26

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 7 of 27 

 

A custom-built platform allowed the subjects to be examined in a supine head-first position 
while having both the MRS-coil as well as a cylindrical (r = 50 mm, h = 80 mm) external reference 
filled with 85 mM dimethyl methylphosphonate (DMMP) placed underneath the subject’s spinal 
erectors (Figure 1). 
31P-MRS Processing: For post-processing of the 31P-MRS data, jMRUI [49] was used with the AMARES 
algorithm in combination with prior knowledge [50] for relative quantification of the resonances. 
Phosphocreatine (PCr) was used as a chemical-shift reference assigned to the standard chemical shift 
of −2.35 ppm, and other assignments were obtained from the literature as previously described [14]. 
Assignments are shown for the FM and CON groups in Figure 2. 

 
Figure 2. Spectra corresponding to the mean for the (A) control group (n = 30) and the corresponding 
(B) patient group with fibromyalgia (n = 32) in the spinal erectors at 3 T. Spectra are all normalized in 
Table (1) Phosphomonoesters(PME), (2) inorganic phosphate (Pi), (3) phosphodiesters (PDE), (4) 
phosphocreatine (PCr), (568) γ, α, and β-nucleotide triphosphate (mainly Mg-saturated ATP), and (7) 
NAD(H). (C) The difference between the two groups of subjects. 

  

Figure 2. Spectra corresponding to the mean for the (A) control group (n = 30) and the corresponding
(B) patient group with fibromyalgia (n = 32) in the spinal erectors at 3 T. Spectra are all normalized
in Table (1) Phosphomonoesters(PME), (2) inorganic phosphate (Pi), (3) phosphodiesters (PDE),
(4) phosphocreatine (PCr), (568) γ, α, and β-nucleotide triphosphate (mainly Mg-saturated ATP),
and (7) NAD(H). (C) The difference between the two groups of subjects.

2.7. Statistics

The statistics were performed using the statistical packages IBM SPSS Statistics (version 24.0;
IBM Corporation, Route 100 Somers, New York, USA) and SIMCA-P+ (version 15.0; Sartorius Stedim
Biotech, Umeå, Sweden). A P-value < 0.05 was considered statistically significant. Text and tables
report the mean value ± one standard deviation (± 1 SD) of continuous variables, and percentages (%)
are reported for categorical variables. To compare groups, we used the Student’s t-test for un-paired
observations and the Chi square test for proportions. Previous studies have discussed the necessity of
using advanced multivariate analyses (MVDA) when accounting for system-wide aspects including
missing data and multicollinearity problems [53]. Using SIMCA-P+, we applied advanced principal
component analysis (PCA) to determine multivariate outliers and orthogonal partial least square
regressions (OPLS) to determine multivariate associations. These techniques do not require normal
distributions of the included variables [54]. SIMCA-P+ uses the non-linear iterative partial least
squares (NIPALS) algorithm to handle missing data: max 50% missing data for variables/scales and
max 50% missing data for subjects. In the present study, PCA was used to determine multivariate
outliers. PCA extracts and displays systematic variation in the data matrix (i.e., a kind of multivariate
correlation analysis). If data were skewed, variables were log transformed before the statistical analyses.
A cross validation technique was used to identify nontrivial components (p). Variable loadings on
the same component p were correlated, and variables with high loadings but opposing signs were
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negatively correlated. Variables with high absolute loadings were considered significant. Per definition,
the obtained components are not correlated and are arranged in decreasing order with respect to
explained variation. R2 describes the goodness of fit, the fraction of the sum of squares of all the
variables explained by a principal component [55]. Q2 describes the goodness of prediction, the fraction
of the total variation of the variables that can be predicted using principal component cross validation
methods [55]. Outliers were identified using two methods: score plots in combination with Hotelling’s
T2 and distance to model in X-space. In the present study, one strong multivariate outlier (a control
subject–study ID 115) was identified and excluded from the multivariate analyses.

OPLS-discriminant analysis (OPLS-DA) was made for multivariate group analysis. OPLS was
used for the multivariate regression analyses of pain intensity, PPTs over trapezius and erector spinae,
physical tests and blood flow using the data obtained from the 31P-MRS, and MD examinations (except
the pain intensity variables from the MD examination). The variable influence on projection (VIP)
indicates the relevance of each X-variable pooled over all dimensions and Y-variables, the group of
variables that best explains Y [55]. VIP > 1.0 was considered significant if VIP had a 95% jack-knife
uncertainty confidence interval non-equal to zero. P(corr) was used to note the direction of the
relationship (positive or negative) (i.e., the loading of each variable was scaled as a correlation
coefficient and therefore standardized the range from −1 to + 1 [54]). P(corr) is stable during iterative
variable selection and comparable between models. An absolute p(corr) of ≥ 0.50 was considered
statistically significant [54]. Thus, a variable/regressor was considered statistically significant when
VIP > 1.0 and absolute p(corr) ≥ 0.50. A regression model will be obtained including one or several
components (the first is always the predictive component) if certain predefined criteria are fulfilled.
The validity of the model is estimated using cross validation. Hence, for each regression, we report R2,
Q2, and the P-value of a cross-validated analysis of variance (CV-ANOVA). The OPLS analysis was
made in two steps. In the first step, all variables were included in the analysis. In the second step,
the variables with VIP ≥ 1.0 were used in a new OPLS regression. The results of the second (final)
regression in the text and tables are given as R2, Q2, and P-value of CV-ANOVA. The tables present the
regressors with VIP > 1.0 and absolute p(corr) ≥ 0.50.

3. Results

3.1. Data from Questionnaires and Clinical Examinations

Significant group differences were found in disability, catastrophizing, insomnia severity,
psychological distress, perceived pain sensitivity, and health-related quality of life (Table 1).

Table 1. Data obtained from questionnaires in controls and in patients with fibromyalgia (FM).

Group CON FM Statistics

Variables n Mean SD n Mean SD p-value

Age (years) 31 42.26 10.17 33 40.06 11.36 0.417
FM duration (years) − − − 33 6.12 6.04 NA

Pain intensity
global 7days − − − 31 6.55 1.71 NA

HADS 31 4.23 3.59 31 13.32 6.17 < 0.001 *
PCS 31 11.45 8.97 31 19.94 10.34 0.001 *
ISI 31 4.23 4.47 31 13.58 5.96 < 0.001 *

PSQ 31 3.50 0.91 31 5.64 1.80 < 0.001 *
PDI 30 8.43 4.93 31 36.45 11.25 < 0.001 *

EQ5D-VAS 30 86.67 7.54 31 52.16 18.85 < 0.001 *

CON = controls; FM = fibromyalgia; SD = standard deviation; HADS = The Hospital Anxiety and Depression Scale;
PCS = Pain Catastrophizing Scale; ISI = Insomnia Severity Index, PSQ-total = Pain Sensitivity Questionnaire-total
scale; PDI = Pain Disability Index; EQ5D-VAS = Perceived Health according to EQ instrument; NA = Not Applicable.
* denotes statistical significance.
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In addition, significant differences were found in blood pressure and anthropometric variables
(Table 2): FM had somewhat higher blood pressures and higher BMI. In FM, the BMI classes were
30.3% normal weight, 27.3% overweight, and 42.4% obese/severe obese; in CON, the BMI classes were
71.0% normal weight, 22.6% overweight, and 6.5% obese/severe obese (Chi2 = 13.7, df = 1; p < 0.001).
The measures of pain sensitivity (i.e., hyperalgesia/allodynia) also showed significant differences;
in FM, PPT was lower and number of tender points higher. TST, aerobic capacity, and grip force aspects
were significantly lower in FM (Table 2).

Table 2. Variables obtained at the clinical examinations.

Group CON FM Statistics

Variables n Mean SD n Mean SD p-value

Blood pressure systolic (mm Hg) 31 113.35 8.64 33 120.88 12.58 0.007 *
Blood pressure diastolic (mm Hg) 31 75.58 8.23 33 80.55 10.07 0.035 *

Weight (kg) 31 68.57 10.72 33 81.04 18.68 0.002 *
Height (m) 31 1.70 0.06 33 1.66 0.06 0.038 *

BMI (kg/m2) 31 23.81 3.16 33 29.18 6.13 <0.001 *
Number of tender points 31 0.32 0.87 33 16.48 2.66 <0.001 *
Mean PPT all sites (kPa) 31 383.66 109.91 33 132.55 84.66 <0.001 *

PPT Trapezius catheter side (kPa) 31 303.74 103.01 33 109.54 69.01 <0.001 *
PPT Erector Spine catheter side (kPa) 31 432.61 147.15 33 121.79 87.91 <0.001 *

MaxVO2 per kg (mL/kg/min) 30 2.64 0.49 30 2.17 0.53 0.001 *
Grip force-max (N) 30 311.59 51.58 33 240.38 63.94 <0.001 *

Grip force-average (N) 30 232.77 45.26 33 162.31 54.07 <0.001 *
Grip force-endurance (N) 30 233.05 127.05 33 137.80 47.75 <0.001 *

TST 30 17.80 3.03 32 13.63 3.47 <0.001 *

CON = controls; FM = fibromyalgia; SD = standard deviation; BMI = Body Mass Index;
PPT = Pressure Pain Threshold; TST = Timed-Stands Test; * denotes statistical significance.

3.2. Microdialysis (MD)

Pain intensity was significantly higher in FM throughout MD (Table 3), whereas CON had very
low levels of pain. Mean blood flow (as well as blood flow at 140 and 160 min) of the erector spinae
was significantly lower in FM (Table 3); no significant differences were noted for the trapezius (Table 3).
At baseline (140 min), both muscles had significantly higher pyruvate level in FM than in CON (Table 3).
In addition, FM had significantly higher mean pyruvate of the trapezius than CON; a similar but
non-significant trend was noted for erector spinae (p = 0.079). No significant group differences were
found for both muscles regarding glucose, lactate, glycerol, and glutamate (Table 3).
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Table 3. Data obtained from the microdialysis of trapezius and erector spinae muscles.

Groups Controls FM Statistics

Variables n Mean SD n Mean SD p−value

NRS pre insertion 31 0.13 0.43 33 4.82 2.89 <0.001 *
NRS 140 min 31 0.42 0.85 33 5.55 2.21 <0.001 *
NRS 160 min 31 1.74 1.84 33 7.67 1.67 <0.001 *

Difference NRS 160 min−140 min 31 1.32 1.38 33 2.12 1.75 0.047 *
Mean NRS 140−220 min 31 0.61 0.84 33 6.07 1.85 <0.001 *

Blood flow Trapezius 140 min 30 0.68 0.07 32 0.65 0.07 0.054
Blood flow Trapezius 160 min 30 0.70 0.10 32 0.67 0.11 0.249

Difference Blood flow Trapezius 160 min−140 min 30 0.02 0.05 32 0.03 0.09 0.825
Mean Blood flow Trapezius 140−220 min 30 0.69 0.07 32 0.66 0.07 0.107

Blood flow Erector spinae 140 min 26 0.54 0.19 31 0.36 0.19 0.001 *
Blood flow Erector spinae 160 min 26 0.59 0.17 31 0.39 0.19 <0.001*

Difference Blood flow Erector spinae 160 min−140 min 25 0.03 0.08 31 0.03 0.08 0.886
Mean Blood flow Erector spinae 140−220 min 27 0.55 0.18 31 0.37 0.18 <0.001 *

Glucose Trapezius 140 min (mmol L−1) 29 10.00 6.92 32 8.41 5.24 0.312
Glucose Trapezius 160 min (mmol L−1) 30 13.25 19.05 32 7.89 5.44 0.132

Difference Glucose Trapezius 160 min–140 min (mmolLl−1) 29 3.11 19.08 32 −0.52 4.94 0.303
Mean Glucose Trapezius 140−220 min (mmol L−1) 30 9.65 5.94 32 8.27 4.39 0.300

Glucose Erector spinae 140 min (mmol L−1) 24 8.35 6.32 31 9.12 6.33 0.657
Glucose Erector spinae 160 min (mmol L−1) 24 12.89 21.88 31 12.57 26.87 0.962

Difference Glucose Erector spinae 160 min−140 min (mmol L−1) 23 4.91 22.89 31 3.45 28.59 0.841
Mean Glucose Erector spinae 140−220 min (mmol Lv1) 25 9.48 6.34 31 10.55 8.81 0.613

Lactate Trapezius 140 min (mmol L−1) 28 2.55 1.62 32 2.71 1.67 0.709
Lactate Trapezius 160 min (mmol L−1) 28 4.61 7.29 32 2.88 2.05 0.234

Difference Lactate Trapezius 160 min − 140 min (mmol L−1) 27 2.19 6.80 32 0.17 1.90 0.145
Mean Lactate Trapezius 140−220 min (mmol L−1) 30 3.51 2.33 32 3.22 1.48 0.552

Lactate Erector spinae 140 min (mmol L−1) 23 1.86 1.04 29 2.68 3.80 0.275
Lactate Erector spinae 160 min (mmol L−1) 23 2.91 4.32 29 2.74 2.66 0.862

Difference Lactate Erector spinae 160 min−140 min (mmol L−1) 23 1.04 4.21 28 0.08 3.36 0.369
Mean Lactate Erector spinae 140–220 min (mmol L−1) 23 2.23 1.36 30 3.65 5.58 0.237

Pyruvate Trapezius 140 min (µmol L−1) 30 12.97 10.98 32 27.96 18.19 < 0.001 *
Pyruvate Trapezius 160 min (µmol L−1) 30 25.54 34.47 32 33.84 31.16 0.323

Difference Pyruvate Trapezius 160 min−140 min (µmol L−1) 30 12.57 31.74 32 5.88 24.81 0.357
Mean Pyruvate Trapezius 140−220 min (µmol L−1) 30 20.10 17.87 32 38.64 29.75 0.005 *

Pyruvate Erector spinae 140 min (µmol L−1) 25 12.37 10.97 31 26.59 30.74 0.032 *
Pyruvate Erector spinae 160 min (µmol L−1) 25 27.22 45.69 31 80.37 270.52 0.337

Difference Pyruvate Erector spinae 160 min−140 min (µmol L−1) 24 14.66 46.09 31 53.79 275.61 0.495
Mean Pyruvate Erector spinae 140−220 min (µmol L−1) 26 18.57 15.97 31 44.15 71.35 0.079

Glycerol Trapezius 140 min (mmol L−1) 30 90.37 60.04 32 95.26 52.10 0.733
Glycerol Trapezius 160 min (mmol L−1) 29 108.94 82.71 32 105.91 85.78 0.889

Difference Glycerol Trapezius 160 min−140 min (mmol L−1) 29 19.35 92.43 32 10.65 72.58 0.683
Mean Glycerol Trapezius 140−220 min (mmol L−1) 30 90.06 41.68 32 103.28 57.53 0.307

Glycerol Erector spinae 140 min (mmol L−1) 25 138.79 96.15 31 149.73 119.08 0.712
Glycerol Erector spinae 160 min (mmol L−1) 25 141.55 177.53 29 136.95 101.51 0.906

Difference Glycerol Erector spinae 160 min − 140 min (mmol L−1) 24 7.17 198.28 29 −10.62 97.96 0.673
Mean Glycerol Erector spinae 140−220 min (mmol L−1) 26 126.60 65.65 31 150.91 90.05 0.258

Glutamate Trapezius 140 min (mmol L−1) 30 49.77 31.65 32 56.06 32.50 0.444
Glutamate Trapezius 160 min (mmol L−1) 29 81.88 56.69 32 79.47 55.15 0.867

Difference Glutamate Trapezius 160 min−140 min (mmol L−1) 29 32.56 57.77 32 23.42 40.17 0.473
Mean Glutamate Trapezius 140−220 min (mmol L−1) 30 63.24 30.87 32 67.55 34.33 0.606

Glutamate Erector spinae 140 min (mmol L−1) 25 41.40 26.52 31 30.20 43.02 0.260
Glutamate Erector spinae 160 min (mmol L−1) 25 48.96 78.95 31 41.44 88.96 0.742

Difference Glutamate Erector spinae 160 min − 140 min (mmol L−1) 24 6.21 79.89 31 11.24 88.62 0.828
Mean Glutamate Erector spinae 140 − 220 min (mmol L−1) 26 41.79 26.23 31 33.82 39.23 0.381

NRS = Numeric rating scale for pain intensity. * denotes statistical significance.

3.3. Spectroscopy (31P-MRS)

Significantly lower absolute concentrations of ATP and PCr were found in FM, but concentrations
of Pi and pH showed no significant group differences (Table 4). In FM, PCr/Ptot was significantly lower
and Pi/PCr was significantly higher; the other ratios did not differ (Table 4).
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Table 4. Results obtained from spectroscopy examination of the erector spinae muscle.

Group CON FM Statistics

Variables n Mean SD n Mean SD p-value

PCr (mM) 30 40.06 8.54 32 34.07 11.49 0.024 *
Pi (mM) 30 5.68 1.84 32 5.29 1.76 0.409

ATP (mM) 30 8.64 1.49 32 7.57 1.91 0.017 *
pH 30 7.03 0.03 32 7.03 0.03 0.514

Ratio ATP/Ptot 30 0.30 0.02 32 0.30 0.02 0.897
Ratio PCr/Ptot 30 1.37 0.06 32 1.30 0.13 0.018 *
Ratio Pi/Ptot 30 0.19 0.03 32 0.20 0.03 0.098

Ratio ATP/PCr 30 0.22 0.02 32 0.23 0.04 0.101
Ratio Pi/PCr 30 0.14 0.03 32 0.16 0.04 0.017 *

CON = controls; FM = fibromyalgia; SD = standard deviation; PCr = phosphocreatine; Pi = inorganic Phosphate;
Ptot = total phosphorus; ATP = adenosine triphosphate. * denotes statistical significance.

3.4. Regression Analyses

The regression analyses investigated whether it was possible to regress group membership (FM or
CON), pain intensity and PPT variables, blood flow in the erector spinae, and physical tests using the
variables shown in Tables 3 and 4 (except the pain intensity variables from the MD (Table 3)).

3.4.1. Group Membership

In the multivariate context, blood flow aspects of the erector spinae together with PCr, ATP,
and two spectroscopy ratios (PCr/Ptot and Pi/PCr) were significant regressors of the group differentiation
(FM vs. CON) (Table 5). In addition, group differentiation was significantly influenced by pyruvate
levels and blood flow of the trapezius.

Table 5. OPLS-DA of group membership (CON denoted 0 and FM denoted 1). Regressors used data
from spectroscopy and microdialysis (except pain variables from microdialysis) (cf. Tables 3 and 4).
The regression had one predictive component. Only significant variables are shown (i.e., variables with
VIP > 1.0 and absolute p(corr) ≥ 0.50).

Variables VIP p(corr)

Blood flow Erector spinae 140 min 2.37 −0.83
Mean Blood flow Erector spinae 140−220 min 2.27 −0.81

Blood flow Erector spinae 160 min 2.23 −0.80
PCR (mM) 1.97 −0.70

PCr/Ptot 1.94 −0.69
ATP (mainly ATP; mM) 1.94 −0.69

Pi/PCr 1.82 0.65
Pyruvate trapezius 140 min 1.60 0.57

Mean Blood flow Trapezius 140–220 min 1.57 −0.55
ATP/PCr 1.49 0.53

Blood flow Trapezius 160 min 1.42 −0.50

R2 0.26
Q2 0.18

CV-ANOVA p-value 0.003
n 61

VIP and p(corr) are reported for each regressor (i.e., the loading of each variable scaled as a correlation coefficient
and therefore standardizing the range from −1 to + 1). The sign of p(corr) indicates the direction of the correlation
with the dependent variable (+ = positive correlation; − = negative correlation). Hence, a negative p(corr) indicates
lower values for a certain variable in FM in the multivariate context. The four bottom rows report R2, Q2, P-value
of the CV-ANOVA, and number of subjects included in the regression (n) from the second OPLS regression
(see Statistics for details).
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3.4.2. Pain Intensity in FM

Three spectroscopy ratios (Pi/PCr positively, Pi/Ptot positively, and PCr/Ptot negatively) as well as
blood flow aspects of both muscles (negatively) were in the multivariate context strongest associated
with pain intensity (Table 6). Additionally, pyruvate levels of erector spinae contributed to the
variations in pain intensity. More than 50% of the variation (i.e. R2 = 0.52) in pain intensity was
explained of the variables displayed in Table 6.

Table 6. OPLS of global pain intensity previous seven days in FM. Regressors used data from
spectroscopy and microdialysis (except pain variables from microdialysis) (cf. Tables 3 and 4).
The regression had one predictive component. Only significant variables are shown (i.e., variables with
VIP > 1.0 and absolute p(corr) ≥ 0.50).

Variables VIP p(corr)

Pi/PCr 1.71 0.65
Mean Blood flow Trapezius 140–220 min 1.70 −0.64

Glutamate Trapezius 160 min 1.53 −0.57
Blood flow Trapezius 140 min 1.52 −0.57

Blood flow Erector spinae 140 min 1.51 −0.57
Pi/Ptot 1.51 0.57

PCr/Ptot 1.51 −0.57
Difference Pyruvate Erector spinae 160 min–140 min 1.48 0.56

Pyruvate Erector spinae 160 min 1.48 0.56
Blood flow Trapezius 160 min 1.48 −0.55

Difference Glutamate Erector spinae 160 min–140 min 1.46 0.55
Mean Pyruvate Erector spinae 140–220 min 1.46 0.55

Difference Glucose Erector spinae 160 min–140 min 1.39 0.52
PCr 1.38 −0.53

Mean Blood flow Erector spinae 140–220 min 1.37 −0.51
Blood flow Erector spinae 160 min 1.35 −0.51

R2 0.52
Q2 0.32

CV-ANOVA p-value 0.006
n 30

VIP and p(corr) are reported for each regressor (i.e., the loading of each variable scaled as a correlation coefficient and
therefore standardizing the range from −1 to + 1). The sign of p(corr) indicates the direction of the correlation with
the dependent variable (+ = positive correlation; − = negative correlation). Hence, a positive p(corr) for a certain
variable indicates a positive correlation with pain intensity in FM in the multivariate context. The four bottom rows
report R2, Q2, P-value of the CV-ANOVA, and number of subjects included in the regression (n) from the second
OPLS regression (see Statistics for details).

3.4.3. Pressure Pain Thresholds (PPT) for Trapezius and Erector Spinae

Since FM and CON differed markedly in PPTs (Table 2), an OPLS regression of all subjects will
mainly reflect the group differentiation (cf. Table 5). The regressions were made separately in each
group. The OPLS of PPT over erector spinae included both spectroscopy and MD data while the
analysis of PPT over the trapezius used MD data since spectroscopy not was done for this muscle.

It was not possible to significantly regress PPT in CON in either of the two muscles.

PPT of trapezius

In FM, increases in glutamate, lactate, glycerol, and pyruvate from 140 min to 160 min correlated
positively with PPT (Table 7). Glutamate level at 160 min and blood flow aspects of trapezius also
contributed and correlated positively with PPT.
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Table 7. OPLS of PPT over trapezius in FM. Regressors used data from microdialysis of this muscle
(except pain variables from microdialysis) (cf. Table 3). Only significant variables are shown
(i.e., the variables with VIP > 1.0 and absolute p(corr) ≥ 0.50).

Variables VIP p(corr)

Difference Glutamate Trapezius 160 min–140 min 1.84 0.78
Difference Lactate Trapezius 160 min–140 min 1.71 0.72

Glutamate Trapezius 160 min 1.51 0.64
Blood flow Trapezius 140 min 1.41 0.60

Difference Glycerol Trapezius 160 min–140 min 1.39 0.59
Mean Blood flow Trapezius 140–220 min 1.36 0.57

Difference Pyruvate Trapezius 160 min–140 min 1.20 0.51

R2 0.32
Q2 0.19

CV-ANOVA P-value 0.050
n 30

VIP and p(corr) are reported for each regressor (i.e., the loading of each variable scaled as a correlation coefficient and
therefore standardizing the range from −1 to + 1). The sign of p(corr) indicates the direction of the correlation with
the dependent variable (+ = positive correlation; − = negative correlation). Hence, a positive p(corr) for a certain
variable indicates a positive correlation with PPT over trapezius in FM in the multivariate context. The four bottom
rows report R2, Q2, P-value of the CV-ANOVA, and number of subjects included in the regression (n) from the OPLS
regression (see Statistics for details).

PPT of Erector spinae

In FM Pi/PCr, Pi/Ptot, two glycerol aspects and pyruvate at 140 min were the most important
regressors of PPT (Table 8).

Table 8. OPLS of PPT over erector spinae in FM. Regressors used data from microdialysis and
spectroscopy of this muscle (except pain variables from microdialysis) (cf. Tables 3 and 4). The regression
had one predictive component. Only significant variables are shown (i.e., variables with VIP > 1.0 and
absolute p(corr) ≥ 0.50).

Variables VIP p(corr)

Pi/PCr 1.73 −0.69
Pi/Ptot 1.58 −0.63

Mean Glycerol Erector spinae 140–220 min 1.52 −0.60
Glycerol Erector spinae 140 min 1.51 −0.60
Pyruvate Erector spinae 140 min 1.46 −0.58

Difference Blood flow Erector spinae 160 min–140 min 1.44 −0.57
Blood flow Erector spinae 140 min 1.41 0.56

Lactate Erector spinae 140 min 1.38 −0.54
PCr/Ptot 1.36 0.54

R2 0.32
Q2 0.24

CV-ANOVA P-value 0.020
n 31

VIP and p(corr) are reported for each regressor (i.e., the loading of each variable scaled as a correlation coefficient and
therefore standardizing the range from −1 to + 1). The sign of p(corr) indicates the direction of the correlation with
the dependent variable (+ = positive correlation; − = negative correlation). Hence, a positive p(corr) for a certain
variable indicates a positive correlation with PPT of erector spinae in FM in the multivariate context. The four bottom
rows report R2, Q2, P-value of the CV-ANOVA, and number of subjects included in the regression (n) from the OPLS
regression (see Statistics for details).

3.4.4. Blood Flow in Erector Spinae

In this analysis, spectroscopy data and baseline MD data were used as regressors of blood flow
at baseline for erector spinae. We obtained significant regressions for all subjects taken together and,
in each group, separately (Table 9). Five significant regressors were obtained for each regression and
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four of these were the same although with different relative importance within each regression: ATP
(positively correlated); Pi/PCr (negatively), Pi/Ptot (negatively); and PCr/Ptot (positively). In all subjects
and in FM, but not in CON, PCr was a significant regressor of blood flow.

Table 9. OPLS regressions of blood flow at baseline (140 min) in erector spinae in all subjects taken
together, in CON, and in FM. Regressors used data from spectroscopy and MD data from baseline of this
muscle (except pain variables from microdialysis). Only significant variables are shown (i.e., variables
with VIP > 1.0 and absolute p(corr) ≥0.50).

All CON FM

Variables VIP p(corr) Variables VIP p(corr) Variables VIP p(corr)

ATP 1.63 0.71 Pi/PCr 1.53 −0.68 Pi/PCr 1.87 −0.86
Pi/PCr 1.62 −0.71 ATP 1.42 0.64 Pi/Ptot 1.69 −0.78

Pi/Ptot 1.45 −0.64 Glycerol Erector spinae 140
min 1.39 −0.63 PCr/Ptot 1.68 0.78

PCR 1.43 0.62 Pi/Ptot 1.37 −0.61 PCR 1.17 0.54
PCr/Ptot 1.42 0.62 PCr/Ptot 1.20 0.54 ATP 1.14 0.52

R2 0.50 R2 0.56 R2 0.37
Q2 0.45 Q2 0.47 Q2 0.25

CV-ANOVA
p-value < 0.001 CV-ANOVA P-value <0.001 CV-ANOVA

P-value 0.022

n 55 n 25 n 30

VIP and p(corr) are reported for each regressor (i.e., the loading of each variable scaled as a correlation coefficient and
therefore standardizing the range from −1 to + 1). The sign of p(corr) indicates the direction of the correlation with
the dependent variable (+ = positive correlation; − = negative correlation). Hence, a positive p(corr) for a certain
variable indicates a positive correlation with blood flow of erector spinae in the multivariate context. The four bottom
rows of each regression report R2, Q2, P -value of the CV-ANOVA, and number of subjects included in the regression
(n) from the OPLS regression (see Statistics for details).

3.4.5. Physical Tests

Grip strength aspects: It was impossible to obtain significant regressions in the groups separately.
In all subjects (i.e., as a group), the strongest associations with grip strength were pyruvate variables
from both muscles (negatively) and blood flow of thee erector spinae (positively) (Table S1).

Lower extremity muscle performance (TST): In all subjects (i.e., as a group), the strongest
associations with TST were Pi/PCr and Pi/Ptot (both negatively), mean pyruvate levels of the
two muscles (negatively), and baseline blood flow of erector spinae (positively) (Table S2). In FM,
the strongest regressors in the significant regression of TST were pyruvate, glutamate, and glucose
aspects (all negatively) (Table S3). In CON, no significant regressions of TST were obtained.

Aerobic fitness: No significant regressions for aerobic fitness were obtained for all subjects
(as a group) or the CON. In FM, however, aerobic fitness showed the strongest associations with
glycerol aspects (negatively and positively), pyruvate (negatively), and lactate (negatively) levels in
the trapezius and to some extent the erector spinae (Table S4).

4. Discussion

(Original studies using other FM criteria than ACR 1990 criteria have been indicated.)

4.1. Major Results

FM was clearly associated with higher levels of pyruvate and lower levels of ATP and PCr,
a finding that suggests muscle mitochondrial dysfunctions in FM. The multivariate analysis of
the groups (FM vs. CON) (Table 5) showed that blood flow of the erector spine together with the
spectroscopy variables PCR, ATP, PCr/Ptot, and Pi/PCr were more important for group differentiation
than the other variables that exhibited significant group differences. The multivariate associations
between metabolic variables and pain aspects (intensity and PPTs) indicated that peripheral factors
contribute to the perception of pain in FM.
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4.2. Significantly Higher Levels of Pyruvate in FM

The breakdown of glucose and glycogen in the cytosol results in pyruvate and lactate. Increased
pyruvate was found in both muscles of FM, a finding that agrees with two other MD studies of
trapezius that reported increased levels of pyruvate and/or lactate [9,10]. Both substances were also
significantly increased in the vastus lateralis in a third FM cohort [11]. Based on the three muscles
studied in these four FM cohorts, FM seems to be associated with increases in key products of glycolysis
(i.e., pyruvate and possibly lactate). The increased pyruvate level in the trapezius cannot be explained
by insufficient oxygen supply as no blood flow alteration was found in this cohort or in the two other FM
cohorts [10,11]. In addition, the analyses of blood flow in the erector spinae supports this interpretation
as no association with pyruvate levels exists (Table 9).

The mitochondrial pyruvate carrier (MPC) is responsible for the transportation of pyruvate into
mitochondria and its use in the production of ATP [7]. Pyruvate can be reduced to lactate and vice versa
in the cytosol by the bi-directional enzyme lactate dehydrogenase (LDH) [7,56]. Challenging traditional
views regarding glycolysis, it is now evident that lactate is produced both during anaerobic and aerobic
conditions and can be metabolized in the same cell or transported to other cells via lactate shuttles [57,58].
Under aerobic conditions, glycolysis produces lactate, which muscle mitochondria use to produce
ATP [57,58]. Lactate is transported via monocarboxylate transporters into the mitochondrion and
converted to pyruvate. This pyruvate, via pyruvate dehydrogenase, is converted into Acetyl-CoA before
it enters the tricarboxylic acid cycle (TCA) and ultimately contributes to oxidative phosphorylation
(OXPHOS) and the electron transport chain (ECT), and therefore the production of ATP [57–60].

4.3. Lower Absolute Concentrations of PCr and ATP of Erector Spinae in FM

ATP is critical for muscle contractile activity and the demand can increase more than 100-fold
during work [61,62]. To provide energy for muscular contraction, ATP splits into ADP, Pi, and H+

ions by ATPase enzyme [63]. PCr acts as an intermediate energy buffer and “shuttles” energy-rich
phosphate present in ATP from the mitochondria to the myofibrils [64]. As intramuscular stores of
ATP are small, free fatty acids and glucose/glycogen pathways are also activated to produce ATP [62].
Two earlier studies of FM determined the absolute concentrations of PCr and ATP [14,15] and both
found significantly lower levels of these in the quadriceps muscle. These results were confirmed for the
erector spinae in this study (Table 4). Lower ATP levels seem to characterize FM as low ATP levels have
also been found in skin, plasma, platelets, neuronal cells, and peripheral blood mononuclear cells of FM
patients [65–67]. The decreased ATP and PCr levels were parallel in FM as the ATP/PCr ratio was not
different between the two groups (Table 4). This finding agrees with the two earlier 31P-MRS studies
based on our calculations of their data [14,15]. The ratios involving PCr and phosphorus (i.e., PCr/Ptot

and Pi/PCr) both showed significant group differences, which is mainly due to the significantly lower
PCr in FM as the concentration of Pi and the Pi/Ptot did not differ (Table 4). Hence, these two ratios
indicate alterations in the PCr-phosphorus balance. The lower ATP production in FM subsequently
results in lower PCr concentration, whereas the Pi concentration is not affected and therefore the Pi/PCr
ratio increased in FM, ultimately decreasing PCr/Ptot (Table 4). It was evident that these two ratios
were also important for pain aspects and blood flow.

4.4. What is the Explanation for Metabolic and Blood Flow Alterations?

Mitochondrial dysfunction could explain the increased pyruvate levels and lower absolute
concentrations of ATP and PCr in FM. The aerobic capacity of muscles is largely governed by the number
of mitochondria and their enzymes [68]. Mitochondria are highly dynamic organelles and a proper
balance between fusion and fission of mitochondria is important for integrity and function including
reactive oxygen species (ROS) generation, apoptosis regulation, and energy metabolism [8,69,70].
Our explanation agrees with previous FM studies that found trapezius muscle fibers had mitochondrial
alterations [71,72]. Moreover, different muscle alterations have been reported for quadriceps [73–75].
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Mitochondrial alterations are not specific for FM and have also been found in muscles that exhibit
localized chronic pain [76,77]. Mitochondrial conditions are divided into primary and secondary
mitochondrial diseases [78]. The latter—possibly present in FM—can be acquired secondary to adverse
environmental effects that result in oxidative stress. Peripheral metabolic alterations have also been
observed in other FM studies. A proteomic study of the trapezius muscle of FM found significant
alterations in metabolic proteins involved in ATP production and in glycolysis and glucogenesis such
as lower concentrations of creatine kinase, a situation that could contribute to lower concentrations of
PCr [79]. In addition, plasma metabolomic studies have found that FM differed from healthy subjects in
energy, lipid, and amino acid metabolites [80]. Altered metabolic profile in urine has also been reported
in patients with FM [81,82]. Larger prospective studies of other peripheral molecules suggest that FM
is associated with peripheral biochemical alterations in muscle and in plasma [83–89] (Han et al. used
ACR 2010 criteria).

The increased pyruvate levels may reflect insufficient transportation of pyruvate into the
mitochondria or insufficient reduction of pyruvate to lactate and/or insufficient transport of lactate
into the mitochondria. Both these conditions would result in a decrease of ATP and PCr. In addition,
increased pyruvate levels may be the result of an inflammatory environment that switches metabolism
from OXPHOS to glycolysis, a condition that would prevent pyruvate from being transported into
mitochondria. In this scenario, LDH in the cytosol converts two pyruvate molecules back into lactate,
resulting in only two ATP molecules rather than the 36 molecules generated by OXPHOS [90], a decrease
in energy production.

Significant associations were found mainly between the spectroscopy variables and blood flow in
the erector spinae at baseline (Table 9). As in other studies, we found that blood flow was positively
associated with ATP; intraluminal ATP is a vasodilator that can lead to both activation of vasoactive
substances (e.g., nitric oxide, NO) and prostacyclin by activation of inwardly rectifying potassium
channels [91]. Moreover, PCr concentration and the balance between PCr and phosphorus were
multivariately associated with blood flow (Table 9). At this time, causality is unclear and cannot be
determined in this study. In addition, other factors such as increased sympathetic tone may contribute
to lower blood flow in FM [92]. The unaltered blood flow in trapezius muscle agrees with earlier
studies of this muscle in FM [10,11]. A conflicting situation exists regarding muscle blood flow in
FM [93]. The different situations in the two muscles may indicate that FM muscles have different
predilections for blood flow changes and/or temporal aspects (i.e., the pain condition is first initiated in
the neck-shoulder muscles).

4.5. What Is the Reason for Mitochondrial Dysfunction?

The observation of reduced physical capacity in FM (Table 2) agrees with other studies [94,95]
(Umay et al. used ACR 2013 criteria). The mitochondrial density and capacity increases as the result of
exercise [69,70]. Aging, immobilization, and long-term physical inactivity are associated with negative
changes in content and function of mitochondria [95,96]. Muscle disuse/inactivity causes large loss
in muscle mass that is preceded by changes in mitochondrial content [70]. According to reviews,
aerobic and muscle strengthening exercise interventions reduce pain and improve general well-being in
patients with FM [97,98]. Exercise is associated with upregulations of mitochondrial protein synthesis
and therefore the capacity for ATP generation, oxygen delivery, and antioxidant capacity [99]. It is not
known if such effects will also be achieved in FM and if they are associated with improvements in the
clinical presentation. An exercise intervention of FM found that increased pyruvate levels in vastus
lateralis were normalized after a 16-week exercise intervention [11]. Therefore, at least some metabolic
alterations in FM can be addressed successfully using exercise. Mitochondrial function has also been
linked to insulin sensitivity: individuals whose ATP production increased as a result of exercise
also had enhanced insulin sensitivity [100]. FM had higher BMI than CON (Table 2). Furthermore,
physical exercise had fewer positive effects on mitochondrial function in obese subjects than in lean
subjects [100]. Deconditioning is associated with high sympathetic tone and low para-sympathetic
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tone [92]. Muscle strength interventions may reduce sympathetic hyperactivity and abnormal vagal
balance [94].

However, mitochondrial disturbances may not be directly linked to physical activity level.
Mitochondrial dysfunction in the skin may indicate that factors—possibly interacting with each
other—other than inactivity are responsible [65,66]. Aging and obesity are both associated with
mitochondrial dysfunction [76,96]. Partly in agreement with these observations, we found that aside
from group (FM or CON), BMI—but not age—was a significant regressor of PCr, ATP, and puruvate of
trapezius according to OPLS regressions. FM had more insomnia than CON (Table 1); interestingly,
bidirectional associations exist between circadian rhythms and mitochondrial activity [90]. In addition,
common comorbidities in FM may be responsible; diabetes, cardiovascular disease, and neurogenerative
disorders are associated with secondary mitochondrial dysfunctions [78]. Altered activation patterns
of the FM muscle [101–104] may indicate muscular over-activity and therefore alterations in pyruvate
and/or lactate levels [105,106]. Mitochondria dysfunction may also be linked to the pain per se as
discussed below.

4.6. Multivariate Associations between Pain Aspects and Spectroscopy and MD Variables

High pain intensity is a considerable burden for patients with FM. At the group level, pain
intensity was above six on the NRS (Table 1). Pain intensity correlated with the metabolic situation
and blood flow aspects; >50% of the variation in pain intensity was explained by these factors (Table 6).
Specifically, PCr/Ptot and Pi/PCr together with blood flow aspects of both muscles, where the Pi/Ptot and
pyruvate aspects were important regressors of pain intensity (Table 6). A proteomic study of mainly
patients with FM found that 12 muscle proteins showed strong multivariate associations with pain
intensity [107]; proteins related to ATP synthesis were among the important proteins [107]. In addition,
certain plasma proteins showed strong multivariate correlations with pain intensity in two cohorts of
mainly FM [87,108]. In contrast, an inflammatory panel of 92 cytokines/chemokines from plasma were
not correlated with pain intensity [109]. In the exercise intervention above-mentioned, the degree of
normalization in pyruvate was significantly associated with decreases in pain intensity although the
association was weak [11]. Thus, exercise interventions normalizing muscle metabolic situation may
affect pain intensity.

As expected, the PPT registrations confirmed the presence of generalized hyperalgesia/allodynia
in FM (Table 2) [110–113] (different criteria used in these references). PPT measures when an acute
mechanical stimulus becomes painful; in healthy subjects, the stimuli activates both the peripheral
nociceptors and the CNS. In FM, peripheral metabolism and blood flow alterations influenced PPT.
It was not possible to regress PPT in CON because factors other than those in FM are important
for PPT; such group differences were also found in a plasma proteomic study [114]. PPT over
trapezius (spectroscopy not made) was positively associated with the differences in blood flow and
in concentrations of glutamate, lactate, glycerol, and pyruvate (Table 7). Therefore, more prominent
metabolic changes during highly repetitive work were associated with higher PPT in FM. Pi/PCr,
Pi/Ptot, two glycerol aspects and pyruvate at 140 min were the most important regressors of PPT over
erector spinae (Table 8). Associations between peripheral biochemical molecules and PPT in FM have
been reported previously where muscle (including proteins related to ATP synthesis) and plasma
proteins showed strong multivariate associations with PPT [87,107,114]. The acute pressure used
to elicit PPT is a peripheral input, which in FM partly reflects the metabolic status in muscle tissue.
As only approximately one-third of the variation in PPT was explained, other peripheral and/or central
factors—not mutually exclusive—contribute in FM (e.g., a continuous nociceptive input, peripheral
nociceptor sensitization, secondary hyperalgesia in the primary pain region, and a generalized state of
hypersensitivity such as central sensitization including impaired descending control of nociception).

As chronic pain is common in patients with different mitochondrial diseases [115], it would be
helpful to know whether metabolic alterations directly interact with nociception and pain in FM or
whether these metabolic alterations reflect other mitochondrial mechanisms more directly associated
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with nociception and pain. For example, increased lactate and pyruvate levels can induce ROS, which in
turn may interact with nociception [116–119]. However, we suggest that other aspects of dysfunctional
mitochondria are responsible and interact with immune and nociceptive systems. Mitochondrial
dysfunction can lead to inflammatory conditions [120]. Mitochondria have a vital role in the regulation
of immune cells and contribute to immune responses [121]. Dysfunctional mitochondria release
damage-associated molecular patterns recognized by the immune system (e.g., increased levels of
mtROS or mtDNA) that trigger immune and inflammatory responses [90]. Normally, dysfunctional
mitochondria that produce high mtROS are removed by mitophagy to avoid harmful inflammation
effects [122]. Increased ROS levels have been reported in FM [123,124]. Excessive production of mtROS
has been associated with aging, osteoarthritis, and rheumatoid arthritis [90]. Increased mtROS levels
can activate inflammasomes (NLRP3) that stimulate caspase-1, which upregulates several inflammatory
cytokines (e.g., IL-1β and IL-18) [120]. NLRP3 may be activated in FM [125]. IL-1β causes pain by
directly acting on sensory neurons via their receptors [126] and stimulates production of additional
algogenic substances [127]. A systematic review [128] was unable to confirm increased plasma levels
of IL-1β (also in blood cells) and IL-18 in FM [125]. These conflicting results for IL-1β may be due to
IL-1β’s anti-inflammatory and pro-inflammatory properties [129]. Mitochondria can also modulate
innate immunity via nuclear factor kappa B (NF-кB) and interferon regulatory factor I pathways
with subsequent activation of TNF-α, IL-1, IL-6, IL-8, IFNβ, and IFNλ1 [8,90]. Other dysfunctions of
mitochondria (e.g. calcium overload, increased apoptosis, decreased mitophagy, and oxidized mtDNA)
can also activate inflammatory pathways [120,122].

4.7. Strengths and Limitations

We used the ACR 1990 classification criteria for FM to simplify comparisons with earlier studies.
In future studies, both ACR 1990 and newer criteria should be used to optimize comparisons with
other studies. During the study, the MR scanner software was upgraded, and the 31P-coil was
replaced, changes that have the potential of introducing limitations. However, as we ensured that
the FM and CON subjects were scanned intermittently, these changes are not likely to affect the
outcome. In addition, there was no significant difference in the proportion of the subjects who were
examined with different versions and coils (Supplementary data 1). Another strength is that we
used multivariate techniques. Typically, FM studies are hypothesis-driven studies that focus on a
few molecules. To achieve a mechanistic understanding of the biological factors maintaining pain
conditions, it is necessary to understand the activated molecular mechanisms from a broader system
biology perspective [130,131], a conclusion that influenced how we analyzed the data. We combined
traditional statistical methods with advanced multivariate methods to handle intercorrelated variables.

5. Conclusions

We found significant metabolic and blood flow alterations in the muscles of FM. The results may
indicate muscle mitochondrial dysfunctions in FM. Although it is unclear why muscle mitochondrial
dysfunctions are found in FM, inactivity, obesity, aging, and pain per se may be involved. The obtained
significant regressions of pain intensity and PPT in FM agree with other studies that report significant
multivariate associations between peripheral biological factors and pain aspects. We believe that our
results may be important for understanding the pathophysiological mechanisms in FM and ultimately
contribute to developing effective treatments for FM.
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