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Abstract
Purpose of Review The cardiovascular (CV) risk related to lipid disorders is well established and is based on a robust body of
evidence from well-designed randomized clinical trials, as well as prospective observational studies. In the last two decades,
significant advances have been made in understanding the genetic basis of dyslipidemias. The present review is intended as a
comprehensive discussion of current knowledge about the genetics and pathophysiology of disorders that predispose to dyslip-
idemia. We also focus on issues related to statins and the proprotein convertase subtilisin/kexin type 9 (PCSK9) and some of its
polymorphisms, as well as new cholesterol-lowering medications, including PCSK9 inhibitors.
Recent Finding Cholesterol is essential for the proper functioning of several body systems. However, dyslipidemia—especially
elevated low-density lipoprotein (LDL-c) and triglyceride levels, as well as reduced lipoprotein lipase activity—is associated
with an increased risk of coronary artery disease (CAD). High-density lipoprotein (HDL-c), however, seems to play a role as a
risk marker rather than as a causal factor of the disease, as suggested by Mendelian randomization studies. Several polymor-
phisms in the lipoprotein lipase locus have been described and are associated with variations in the activity of this enzyme,
producing high concentrations of triglycerides and increased risk of CAD.
Summary Dyslipidemia, especially increased LDL-c and triglyceride levels, continues to play a significant role in CV risk. The
combination of genetic testing and counseling is important in the management of patients with dyslipidemia of genetic etiology.
Strategies focused on primary prevention can offer an opportunity to reduce CVevents.

Keywords Dyslipidemia . Familial hypercholesterolemia . Genetic test . Cardiovascular disease

Introduction

Dyslipidemia, defined as an abnormally high concentration of
lipids in the blood, is one of the main risk factors for the
development and progression of cardiovascular (CV) disease
[1]. Although the prevalence of total blood cholesterol above
desirable indices has decreased in the last decade, it still af-
fects approximately 12% of adults, especially those in the fifth
and sixth decades of life [2]. Dyslipidemia is associated not
only with lifestyle but also with genetic disorders [1–5].
Familial hypercholesterolemia (FH) is an autosomal dominant
inherited disease that affects low-density lipoprotein (LDL-c)
through LDL-c receptor (LDLR) gene mutations and is asso-
ciated with higher CV risk [3]. Besides monogenic disorders
such as FH, polymorphisms involving not only LDL-c genes
but also high-density lipoprotein (HDL-c), lipoprotein lipase
(LPL), and apolipoproteins are also related to higher blood
cholesterol levels, increased CV risk, and, therefore, worse
outcomes [5–12].
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Statins are the cornerstone of dyslipidemia treatment, but
their clinical effect and adverse effect profile may differ de-
pending on the genetic burden of the patient [13–18]. Genetic
profiles that are associated with high blood cholesterol and
higher CV risk can modify the clinical approach on the indi-
vidual level [19, 20]. The discovery of a mutation on the
proprotein convertase subtilisin/kexin type 9 (PCSK9) gene
which is associated with LDL-c levels and CV risk has led to
the development of a new class of agents to treat severe dys-
lipidemia [21, 22••].

In this review, we discuss the evidence for a causal role of
cholesterol in the progression of CV disease, its relationship to
genes and polymorphisms that change the lipid profile, and
implications for treatment. Finally, we examine how precision
medicine, specifically genetic testing and next-generation se-
quencing (NGS), is advancing knowledge on dyslipidemia
and CV disease.

Familial Hypercholesterolemia:
the Prototypical Form of Genetic
Dyslipidemia

FH is the prototype of a monogenic disorder leading to dys-
lipidemia. This disease affects 1 in 200–250 individuals in
general, and the vast majority of these individuals are hetero-
zygotes, making it the most common monogenic disease [23].
Three major pathogenic defects are implicated: mutations in
the LDLR gene, in apolipoprotein B (APOB), or in PCSK9
[24]. Homozygous FH is rarer, caused by pathogenic biallelic
variants, usually in LDLR, with recent data suggesting a prev-
alence of approximately 1 in 160,000 to 450,000 individuals.
The main characteristics of FH in its heterozygous and homo-
zygous forms, as well as its implications for CV risk, are
summarized in Table 1 [25–33]. If left undiagnosed, FH is
associated with increased risk of fatal or nonfatal coronary
events, reaching 50% at age 50 (in untreated women, this risk
reaches 30% at 60 years) [34].

In individuals with LDL-c levels ≥ 190 mg/dL, the risk of
coronary artery disease (CAD) is increased sixfold, but when
a genetic variant causing FH is associated, the risk increases
22-fold at the same LDL-c level [35]. Unfortunately, genetic
screening is not used as widely for the diagnosis of FH as
desired, which can play a decisive role in risk stratification
[36]. In addition, genetic screening allows assessment of the
patient’s relatives by cascade testing, making it clear whether
more aggressive lipid-lowering treatment should be pre-
scribed [37]. Some diagnostic criteria for heterozygous FH,
according to the Dutch Lipid Clinic Network, are summarized
in Table 2 [38, 39].

The Expert Consensus Panel recommends that genetic test-
ing become standard in the care of patients with probable or
definite FH, as well as for their relatives at risk (Fig. 1) [34].

As the costs of NGS have decreased, genetic testing in this
scenario is becoming increasingly affordable, leading to a ma-
jor advance in clinical diagnosis and public health surveillance
[40].

Genes and Polymorphisms Related
to Cholesterol Levels

LDL-c

The role of LDL-c in inflammation and pathogenesis of ath-
erosclerosis has been evaluated extensively since the begin-
ning of the twenty-first century. Consistent evidence from
multiple clinical and genetic studies has established that
LDL-c is a cornerstone in the genesis of CV disease. A
meta-analysis enrolling 892,337 individuals without CV dis-
ease described a strong association between total cholesterol,
LDL-c, and CAD-associated mortality [41]. The discovery of
the LDLR provided more robust subsidies for this association
[42].

Prospective epidemiological studies of Mendelian random-
ization have shown a consistent association between the ab-
solute magnitude of LDL-c and CV risk. The longer an indi-
vidual is exposed to high cholesterol levels, the greater the risk
[43]. Silverman et al. [44•] evaluated more than 310,000 in-
dividuals (mean age 62 years, mean LDL-c 120 mg/dL) in-
cluded in 49 studies. There were 39,645 major vascular
events. In this meta-regression analysis, the authors reported
that lower LDL-c levels were associated with lower rates of
major CVevents. Corroborating these findings, a recent meta-
analysis and meta-regression of 34 studies (n = 136,000 pa-
tients) showed that a significant reduction in LDL-c was as-
sociated with a decrease in CV and all-cause mortality.
However, these findings were more consistent in studies in
which patients had baseline LDL-c > 100 mg/dL [45], sug-
gesting that the greatest benefit of LDL-c reduction therapy
may occur in patients with elevated baseline LDL-c levels.

LDLR mutations are the main cause of FH. Khera et al.
[35] sequenced three genes causative of FH (LDLR, APOB,
and PCSK9) in more than 26,000 participants from seven
case-control studies and five prospective cohort studies. In
their analysis, among participants with LDL-c ≥ 190 mg/dL,
gene sequencing identified an FHmutation in < 2%. However,
for any observed LDL-c level, FH mutation carriers had sub-
stantially increased risk of CAD. It is interesting to point out
that 86% of patients with FH had their mutations located in
LDLR, most of them missense, although the highest LDL-c
levels were related to loss-of-function mutations.

One study reported that common variants in 95 loci were
associated with higher lipid levels. Individuals with an LDL-c
allelic dosage score in the top quartile were 13 times as likely
to have elevated LDL-c as individuals in the bottom quartile
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[46]. In another study, Talmud et al. [47] compared 321
mutation-negative subjects, 319 mutation-positive subjects,
and 3020 controls from the UK Whitehall II cohort.
Participants were genotyped for 12 common LDL-c-raising
alleles, and a weighted LDL-c-raising gene score was con-
structed. In the top decile (LDL-c 189 mg/dL), the CV risk
ratio was 4.17 (3.10–5.78) in comparison with that in the
bottom decile (LDL-c 145 mg/dL). This finding has implica-
tions for familial cascade testing, which might reveal not a
single mutation but rather a polygenic cause.

HDL-c

Over many years, epidemiological studies strongly suggested
that HDL-c levels were inversely associated with the risk of
CAD [48]. However, although this dogma shaped the pano-
rama of dyslipidemia for several generations of physicians, the
causal nature of this relationship has been questioned by stud-
ies of Mendelian randomization. In addition, genetic mecha-
nisms that appear to increase HDL-c have no significant im-
plications for the reduction of myocardial infarction rates,

Table 1 Main characteristics of FH in its heterozygous and homozygous forms

Disease Mutation Lipid phenotype Other manifestations Frequency If untreated

FH [26, 27] LDLR*, APOB, PCSK9,
APOE, SREBP2, STAP1

Increased LDL-c Xanthomas 1/250 Increase CV risk

Heterozygous
FH [25,
28–30]

LDLR LDL-c in the range of
155 to 500 mg/dL

Tendon/skin xanthomas 1/500 Develop CAD before
the age
of 55 years (men)
and 60 years
(women)

Homozygous
FH [31–33]

LDLR, APOB,
PCSK9, LDLRAP1

LDL-c can reach
> 600 mg/dL

Planar and tendinous
xanthomas, valvar and
supravalvar atheroma

Rare
(1/275,000–450,-
000)

Rarely survive beyond
the age of 30 years

FH familial hypercholesterolemia, LDL-c low-density lipoprotein, LDLR LDL-c receptor, LDLRAP1 LDL-c receptor adaptor protein 1, STAP1 signal
transducing adaptor family member 1, SREBP2 sterol regulatory element-binding protein 2, APOB apolipoprotein B, PCSK9 proprotein convertase
subtilisin/kexin type 9, APOE apolipoprotein E

*Occurs in 79% of cases

Table 2 Score for diagnosis of
FH [38, 39] Points

Family history

First-degree relative known with premature coronary artery disease percentile (men < 55 years,
women < 60 years)

First-degree relative with LDL-c > 95th

1

First-degree relative with tendinous xanthomata and/or children aged < 18 years with LDL-c > 95th
percentile

2

Clinical history

Premature coronary artery disease (men < 55 years, women < 60 years) 2

Premature cerebral/peripheral vascular disease (men < 55 years, women < 60 years) 1

Physical examination

Tendinous xanthomata 6

Arcus cornealis prior to age 45 years 4

LDL-c levels (mg/dL)

> 330 8

~ 250–329 5

~ 190–249 3

~ 155–189 1

DNA analysis

Causative mutation in the LDLR 8

< 3 points: no diagnosis; 3–5 points: possible FH; 6–8 points: probable FH; > 8 points: definite FH (reprinted with
permission from the WHO Human Genetics Programme [38])
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which may explain why clinical trials aimed at increasing
HDL-c have failed [49–51].

Apolipoprotein A1 (APOA1) is a protein that is encoded
by the APOA1 gene and plays a specific role in lipid metab-
olism, as the main protein component of plasma HDL-c.
Interestingly, genetically elevated APOA1 did not reduce the
risk of CAD [52]. In the same direction, three functional he-
patic lipase variants associated with a (modest) increase in
HDL-c also did not reduce CV risk [53]. Increases in HDL-c
due to mutations or polymorphisms in genes that regulate
HDL-c remodeling (such as cholesteryl ester transfer protein
(CETP)) or clearance (scavenger receptor class B type 1 (SR-
BI)) have not been clearly linked to vascular protection [54].
Similarly, trials of the plasma CETP inhibitor torcetrapib
found that, although a significant increase (60% or more) in

HDL-c was achieved, an increase in atherosclerosis burden
was also observed [6, 7].

On the other hand, low HDL-c levels are an important risk
factor for atherosclerosis [48]. Rare mutations of APOA1,
ATP-binding cassette protein A1 (ABCA1), and lecithin: cho-
lesterol acyltransferase (LCAT) can contribute to low plasma
levels of HDL-c [4, 5, 55]. These mutations are present in at
least 40% of probands, with reductions in HDL-c levels rang-
ing from 0.44 mmol/L (~ 17 mg/dL) to 0.69 mmol/L
(~ 27 mg/dL). Interestingly, they were associated with CAD
risk only when HDL-c levels were below the 5th percentile
(0.9 mmol/L, ~ 35 mg/dL) [4]. In another study, ABCA1 and
APOA1mutations were evaluated by NGS in 72 patients with
HDL-c below the 10th percentile. Of these individuals, 22%
had a probable or known pathogenic variant and 83% had

FH: Familial hypercholesterolemia; LDL-c: Low-density lipoprotein; LDLR: LDL-c receptor;

PCSK9: Proprotein convertase subtilisin/kexin type 9; APOE: Apolipoprotein E; Lp(a): 

Lipoprotein (a).

Fig. 1 Patients with FH eligible for genetic testing (republished with
permission of Elsevier Science and Technology Journals, from Sturm
et al. [34]; permission conveyed through Copyright Clearance Center,

Inc.). FH, familial hypercholesterolemia; LDL-c, low-density
lipoprotein; LDLR, LDL-c receptor; PCSK9, proprotein convertase
subtilisin/kexin type 9; APOE, apolipoprotein E; Lp(a), lipoprotein (a)

   68 Page 4 of 12 Curr Cardiol Rep           (2019) 21:68 



evidence of atherosclerosis when HDL-c was < 23 mg/dL,
compared with those without mutations, of whom only 39%
had evidence of atherosclerosis when HDL-c was lower than
27 mg/dL [56]. These data show that, even in patients with
low HDL-c levels, the presence of such mutations increases
the risk of atherosclerosis. This robust evidence strengthens
the hypothesis that HDL-c levels can be regarded as a marker
of CV risk, but not as a specific causal risk factor for CV
disease [57].

Lipoprotein Lipase

The complete absence of LPL in individuals who are homo-
zygous for the G188E LPL gene mutation causes complete
loss of enzyme activity [58]. This leads to a phenotype known
as hyperlipoproteinemia type 1 [59]. Several polymorphisms
in the LPL locus are associated with variations in its activity,
serum lipid concentrations, and risk of CAD [60]. The pres-
ence of two mutated alleles in the LPL gene locus causes a
series of deficiencies in enzyme activity, producing marked
fasting hypertriglyceridemia [61]. The H2H2 genotype has
been associated with high fasting triglycerides and LDL-c
and reduced levels of HDL-c, resulting in CAD [8]. In previ-
ous studies, three common LPL variants—Ser447Ter, PvuII,
and HindIII—were associated with higher plasma lipid levels
and CAD [62–64]. In addition, the HindIII polymorphismwas
assessed in a recent meta-analysis, and the genotype HindIII
H+H+ and H+ allele were found to be associated with in-
creased CV risk [9].

Apolipoprotein C3

There is a possible association between the rare allele G3238
and high levels of total cholesterol, triglycerides, apolipopro-
tein C3 (APOC3), and increased CV risk [65]. More recently,
the APOC3 polymorphisms were found to be associated with
stroke risk in Chinese women [66]. The R19X mutation in the
APOC3 gene promoted a 40–50% reduction in APOC3
levels, in addition to reductions in fasting and postprandial
triglycerides. In this population, a significant reduction in cor-
onary artery calcification was observed [10]. Four mutations
in the APOC3 gene were identified as being associated with
plasma triglyceride levels in participants of the Exome
Sequencing Project. These mutations resulted in a 46% de-
crease in circulating APOC3 levels, leading to a 39% decrease
in triglyceride levels. According to the authors, APOC3 defi-
ciency conferred a 40% reduction in CV disease risk [11].

Finally, a meta-analysis investigated the three main
APOC3 polymorphisms (Ssti, T-455C, and C-482T) in all
studies published up to 2016. The authors found that the Ssti
and T-455C polymorphisms increased susceptibility to CAD
significantly, but no association was observed with the
C-482T polymorphism [12].

PCSK9

The PCSK9 gene encodes the proprotein convertase
subtilisin/kexin type 9, an enzyme that reduces the presence
of LDLR on the surface of hepatocytes, reducing LDLR avail-
ability [67]. This leads to alterations in the lipid profile and
elevation of LDL-c levels. In fact, the discovery of the first
PCSK9 gene mutation in 2003, a variant that causes autoso-
mal dominant hypercholesterolemia, was the first step toward
closing a scientific gap in the understanding of cholesterol
metabolism [68]. A meta-analysis of 32 studies showed a
consistent association between the G allele variant of
PCSK9 rs505151 and higher serum LDL-c levels in a
Caucasian population. In addition, this polymorphism was
also related to an increased incidence of CV events. On the
other hand, the T allele variant of PCSK9 rs11591147 was
associated with reduced serum levels of total cholesterol and
LDL-c, as well as reduced CV risk [69]. Other meta-analyses
have shown an association of the PCSK9 rs505151 variant
with increased serum levels of total cholesterol and LDL-c,
as well as increased CV risk [70, 71]. Therefore, these variants
can be used as genetic biomarkers for the assessment of CV
risk and may become targets for diagnosis and more specific
therapeutic intervention.

Dyslipidemia Treatment and Genetics

Statins

Statins, the most widely prescribed drugs for treatment of
dyslipidemia, reduce intrahepatic cholesterol synthesis by
inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase [72]. This leads to upregulation of
LDLR on the hepatocyte surface, increasing LDL-c uptake
and lowering serum levels of this lipoprotein [73]. Statins
are associated with CV risk reduction both as primary and as
secondary prevention [74, 75]. However, some patients do not
achieve cholesterol reduction goals, and others cannot tolerate
these drugs due to adverse effects. The use of pharmacogenet-
ic information to individualize drug treatment in clinical prac-
tice can maximize efficacy and prevent adverse events and is
an important component of precision medicine.

Pharmacogenomics of Statin Adverse Effects

Muscle symptoms are one of the most common statin-related
side effects. They are directly responsible for nonadherence to
lipid-lowering treatment in up to 15% of patients, who are
especially likely to discontinue therapy if muscle pain de-
velops [13]. Some genes that are involved in higher suscepti-
bility to this association have been reported, such as AMPD1,
COQ2, CPT2, and CYP2D6 [76], and there is evidence that
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the presence of some polymorphisms may also be associated
with intolerance to this drug class. The variant c.521C>T
(Val174Ala; rs4149056) is the best known such polymor-
phism, reducing the activity of solute carrier organic anion
transporter family member 1B1 (SLCO1B1) and increasing
plasma levels of statins [14]. Different clinical expressions
of statin intolerance are seen, depending onwhether the carrier
is heterozygous or homozygous (ratio of 1.0 and 17, respec-
tively) [14, 15, 77].

A genotype-based approach for prescribing simvastatin
was proposed by the US National Institutes of Health
Pha rmacogenomics Resea rch Ne twork and the
Pharmacogenomics Knowledge Base (PharmGKB®), where
simvastatin dose should be lowered in the intermediate (geno-
type TC) and high-risk (genotype CC) groups [15, 78]. Such
genotype-informed statin therapy (GIST) may decrease LDL-
c levels and improve adherence in primary care [65]. In a
recent study, 159 patients with a history of statin-induced side
effects were randomized to receive SLCO1B1-directed GIST
or usual care [79]. The primary endpoint was statin adherence
using theMoriskyMedication Adherence Scale. SLCO1B1*5
was found in 25% of the participants. Although no difference
was seen on adherence between the two arms, the GIST arm
had more new statin prescriptions compared with the usual
care group (55.4% versus 38.0%; p = 0.04), lower LDL-c
levels at 3 months (131.9 versus 144.4 mg/dL; p = 0.04),
and lower levels at 8 months (128.6 versus 141.0; p = 0.12)
[55]. Thus, SLCO1B1 testing can help doctors restart statins
and improve patient perception of therapy with this class of
drug.

The ABCB1 gene, related to hepatobiliary and renal–
urinary transport of statins, is also associated with statin-
induced myopathy, but there are no recommendations based
on the genotype due to inconsistent results [80, 81]. Statins are
metabolized via cytochrome P450 (CYP) 3A isoenzymes, and
concomitant use of CYP3A-inhibiting medications is associ-
ated with increased risk of myotoxicity. Polymorphisms that
reduce the function of CYP3A are also associated with in-
creased risk, such as CYP3A4*22 (rs35599367) and
CYP3A5*3 (rs776746). Again, there are no formal recom-
mendations on genotype-based therapy for these polymor-
phisms [14, 82, 83].

Decreased Statin Effect due to Genetic
Polymorphisms

The clinical response to statins may vary according to the
genetic burden of the patient [17, 18, 84]. This interindividual
effect may be explained by polymorphisms related to statin
absorption and metabolism [85]. At least 40 genes are thought
to be related to different statin effects.

The gene that encodes the CETP, which facilitates triglyc-
eride and cholesteryl ester exchange between HDL-c and

apolipoprotein B100-containing lipoproteins, has been exten-
sively studied [16]. Polymorphisms on this gene, such as the
rs3764261 variant, are associated with higher HDL-c and total
cholesterol and with lower LDL-c and triglycerides. On the
other hand, some polymorphisms may reduce HDL-c and el-
evate LDL-c and triglyceride levels, such as the rs1800775
variant, which is associated with higher CV risk [17].
Rs708272, known as Taq1B, is a common polymorphism in
intron 1 that relates to statin response. In a meta-analysis, the
Taq1B genotype was significantly associated with HDL-c
levels. B2B2 individuals had higher HDL-c levels than did
B1B1 subjects, with an impact on CAD rates (odds ratio =
0.78 (0.66 to 0.93); p = 0.008) [18]. In contrast with these
results, the REGRESS trial found that statin treatment reduced
CVand CAD death in B1B1 individuals [86].

Single-nucleotide polymorphisms (SNP) in the gene that
encodes apolipoprotein E (APOE) are associated with total
cholesterol and LDL-c serum levels. APOE ɛ3 homozygotes
derive greater benefit from LDL-c reduction with statins than
ɛ4 homozygotes, and ɛ2 homozygotes experience greater re-
ductions than ɛ3 homozygotes [87]. One study evaluated 43
SNPs in 16 genes implicated with statin response. Among
them, only APOE2 (rs7412) heterozygotes had lower LDL-c
levels compared with common allele carriers [85]. In another
study, 23 candidate genes were analyzed in 5745 individuals.
Three SNPs in APOE were associated with LDL-c reduction:
rs4112, SNP17, and rs429358 [84]. A recent meta-analysis
enrolling 1171 individuals assessed the lipid response to
fluvastatin according to SLCO1B1, APOE, and CYP2C9 ge-
notypes. SLCO1B1 521TT was associated with greater
change in total cholesterol and LDL-c levels compared with
521TC or CC, and APOE ɛ2/ɛ3 was associated with greater
HDL-c improvement in comparison with APOE ɛ3/ɛ3, ɛ3/ɛ4,
or ɛ4/ɛ4 [88].

PCSK9 Inhibitors

The discovery of PCSK9, a serine protease which binds to the
LDLR and targets these receptors for lysosomal degradation,
created an additional route through which plasma LDL-c
levels can be controlled [89].

Two major studies (mean follow-up 2–3 years) tested
monoclonal antibody PCSK9 inhibitors in patients with
established CV disease already on statins: the FOURIER trial
of evolocumab [19] and the ODYSSEY trial of alirocumab
[20]. Both showed extreme reductions in LDL-c levels, on the
order of 60% greater than statins alone. In the FOURIER
study, more than 27,000 patients were evaluated, and those
randomized to receive the PCSK9 inhibitor had a risk reduc-
tion of 15% (combined outcome of myocardial infarction,
stroke, CV death, coronary revascularization, and hospitaliza-
tion for unstable angina) [19]. In the ODYSSEY
OUTCOMES study, which enrolled approximately 19,000
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patients, those treated with the PCSK9 inhibitor also presented
a 15% reduction in the primary combined outcome (CAD
death, nonfatal myocardial infarction, ischemic stroke, or hos-
pitalization for unstable angina) [20]. In the secondary analy-
sis, the clinical benefit of evolocumab was also consistent in
patients with low baseline LDL-c levels (< 70 mg/dL). In this
subgroup of patients, LDL-c was reduced to 20 mg/dL, with a
30% reduction in the risk of CV death, myocardial infarction,
or stroke in comparison with placebo [90].

It is important to point out that greater reductions in
LDL-c entail a proportional reduction in CV risk [91].
Humphries et al. [92] evaluated a large cohort of patients
with severe FH followed from 1992 to 2016. The authors
observed that CAD mortality remained higher in patients
with severe FH who were on statins when compared with
those who did not have this diagnosis. Of note, the im-
portance of a more “radical” reduction of LDL-c, as can
be achieved with PCSK9 inhibitors, places these drugs as
a very interesting option for the clinician. Indeed, these
therapeutic agents offer the opportunity for earlier inter-
vention in order to reduce LDL-c and decrease the impact
of CAD on public health. However, it is important that the
price of PCSK9 inhibitors become more affordable, since
long-term follow-up is necessary [93].

Inclisiran

Small interfering RNA (siRNA) molecules have been
used to target the hepatic production of PCSK9. These
molecules interfere with the expression of specific genes
by affecting the posttranscriptional degradation of mRNA,
thus preventing translation [94, 95]. In a small phase I
randomized clinical trial, subcutaneous doses of 300 mg
or more of inclisiran, a PCSK9-targeted siRNA, signifi-
cantly reduced LDL-c levels for at least 6 months in pa-
tients with a baseline LDL-c of at least 100 mg/dL.
Furthermore, no evidence of major adverse events was
observed [67]. In a multicenter, double-blind, placebo-
controlled phase II trial of 500 patients, administration
of inclisiran to patients with high CV risk led to signifi-
cant reductions in LDL-c levels [96]. Through analysis of
these two studies, one can assume that a single 300-mg
dose of inclisiran administered every 6 months may result
in a mean 50% reduction in plasma levels of LDL-c.
Moreover, the benefit seems similar in the presence or
absence of diabetes, which may make it an especially
attractive treatment option for this subgroup [97].
Robust phase III clinical trials are already underway, with
evaluation of hard clinical endpoints, encompassing
15,000 patients and a planned duration of 5 years [98].
Inclisiran is still an experimental agent and has not been
approved by the US Food and Drug Administration or any
other regulatory authorities [99].

Genetic Tests and Precision Medicine

High Genetic Risk

As noted above, the presence of certain gene polymorphisms
not only increases CV risk but can also affect treatment with
statins. To assess whether a genetic risk-based treatment ap-
proach would be clinically feasible, Natarajan et al. [21] pro-
posed a polygenic risk score derived from up to 57 common
DNA sequence variants associated with CAD. They com-
pared the efficacy of statin therapy in those with high genetic
risk (top quintile) with all others. For this analysis, 4910 par-
ticipants from the WOSCOPS study were selected. Those in
the placebo group with high genetic risk had an increased
hazard ratio for the first CAD event, with a 25% increase in
risk for each standard deviation. In the treatment group, those
with high genetic risk experienced a 44% reduction in first
coronary event, versus 24% in all others. The number needed
to treat to prevent one coronary event was 13 among partici-
pants at high genetic risk and 38 among all others. The
achieved LDL-c reduction was similar among groups. The
authors also tested whether this high genetic risk group would
be predisposed to subclinical atherosclerosis. To asses this
hypothesis, the CARDIA and BioImage cohorts were ana-
lyzed. The authors found higher coronary artery calcification
and carotid artery plaque burden in the high genetic risk group
[21]. This approach was also proposed by Khera et al. [22••]
who analyzed 50 SNPs in a cohort of 55,685 participants from
four trials (ARIC,WGHS,MDCS, and BioImage). The aim of
the study was to determine the extent to which a healthy life-
style is associated with a reduced risk of CAD among partic-
ipants at high genetic risk. The relative risk of incident coro-
nary events was 91% higher among participants at high ge-
netic risk; moreover, in this group, a favorable lifestyle was
associated with a 46% lower relative risk of coronary events
than an unhealthy lifestyle.

Precision Medicine and Familial Hypercholesterolemia

Some studies have shown that NGS can be used in primary
care for the diagnosis of FH [100, 101]. Clinical practice
guidelines based on systematic reviews supported by the US
Centers for Disease Control and Prevention place cascade
screening for close relatives of individuals with FH as a level
1 intervention [102]. Cascade testing using DNA analysis is
also recommended in the clinical guidelines of the UK
National Institute for Health and Care Excellence and in the
consensus statement of the European Atherosclerosis Society
on FH [103, 104]. Genetic testing may also be useful in ther-
apeutic management of FH, since it is able to differentiate
patients with compound heterozygous FH, heterozygous FH,
homozygous FH, double heterozygous FH, or autosomal re-
cessive FH [25, 28]. In addition, genetic testing may be
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helpful in identifying probably or definitely pathogenic vari-
ants that indicate higher CV risk. In these cases, an earlier,
more aggressive approach and strict adherence to therapy are
indicated [34]. It is important to note that a successful molec-
ular diagnosis depends on the ability of the designated method
to evaluate both the heterogeneity of the locus and the allele
associated with FH [37]. In many high-risk individuals, defin-
itive diagnosis of FH cannot be made solely on the basis of
clinical criteria. In a Latvian study enrolling patients with el-
evated LDL-c levels, the use of NGS identified FH-related
mutations in 7.6% of all subjects [105].

Multicenter studies with larger sample sizes and better de-
signs should be conducted to establish the feasibility and cost-
effectiveness of this approach. It is noteworthy that, although
genetic testing can improve patient identification and care in
the setting of FH, clinical diagnosis is still the gold standard
[106]. Finally, data suggest that a DNA-based diagnosis of FH
appears to have a minimal adverse psychological impact, not
being perceived as an anxiety trigger [107, 108].

Conclusion

The field of cardiovascular genetics is growing worldwide and
establishing itself as a reality in the diagnostic and therapeutic
armamentarium of cardiologists. The classification of primary
dyslipidemia by heredity (monogenic or polygenic) is essen-
tial to its understanding. Furthermore, knowledge of the mo-
lecular basis of disease in individual patients allows the im-
plementation of a precision medicine approach, thus promot-
ing correct diagnosis, institution of optimized drug therapy
based on pharmacogenetics, and prognostication. In addition,
genetic diagnosis of an index case can trigger a family-wide
investigation process (cascade screening), allowing early de-
tection, guidance, therapy, and, consequently, reduction of CV
risk in these individuals.

Finally, as with any other test, proper interpretation of the
results of genetic screening is essential not only to establish
the correct diagnosis but also to properly guide patients and
their families. Therefore, careful assessment of the pathogen-
esis of any detected variants is a key aspect. All information
available at major databases and publications should be taken
into consideration, and information should be analyzed by a
skilled team to ensure a reliable result.
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