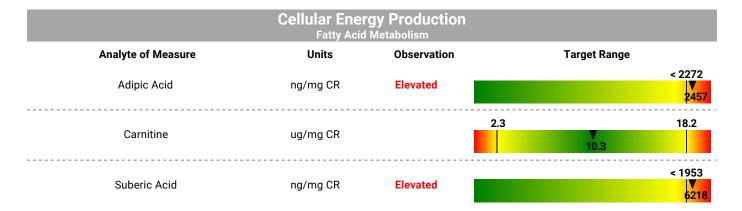

A Patient Sample Report

Epigenetic Biomarker Profile

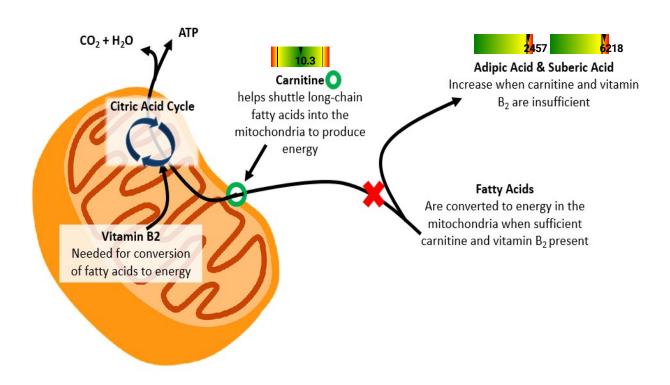
Regenr8 - Female Epigenetic Biomarker Profile

Patient Information	Clinician/Order Information	Sample Information
Jane Doe	Regenr8	Accession# 20-0005475
DOB: 1/9/1965 Age: 55 Gender: Female Phone: 8773168686 Patient ID: a9c17312 Height: 5'.3" Weight: 165lbs	Order date: 3/12/2020	Collected: 3/5/2020 Received: 3/7/2020 Reported: 3/13/2020 Collection times: 1st 7:00am

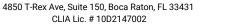
Summary Report			
Assessment Score Good, Fair, Poor	Potential Intervention	Practitioner Recommendation	
Overall Cellular Energy Production	 Carnitine (Pumpkin Seeds, Sunflower Seeds, Sesame Seeds, Legumes, Peas, Lentils, Mushrooms, Avocados, Carrots, Apricots, Bananas, Grains, Red Meat), lysine (if lysine is low)and Vitamin B2 (if adipic, suberic and succinic acids are elevated). Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load 		
B-Vitamin/Methylation Cofactor Assessment	Vitamins B12 (cobalamin), B6 (pyridoxine), Folic Acid, Betaine (Whole Wheat, Wheat Bran, Wheat Germ, Spinach, Beetroot, Broccoli, Spinach), Magnesium (Green leafy Vegetables, Spinach, Sunflower Seeds, Sesame Seeds, Paprika, Ginger, Onion, Kelp) or methyl donors (with elevated MMA all of the above)		

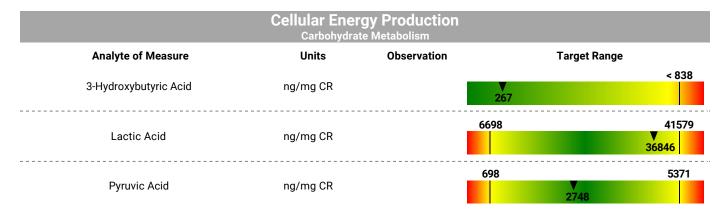


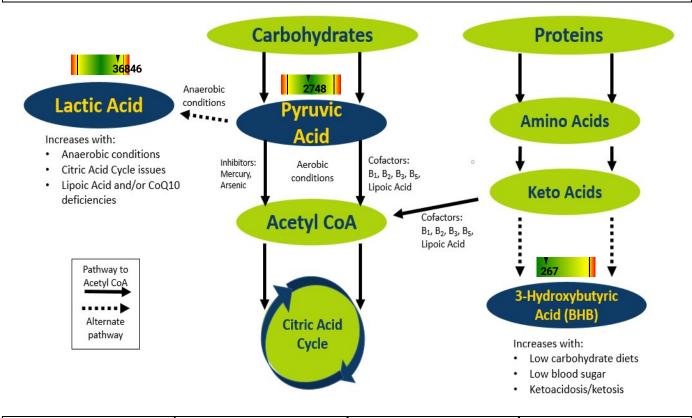
Summary Report			
Assessment Score Good, Fair, Poor	Potential Intervention	Practitioner Recommendation	
Inflammation and Oxidative Stress Assessment	Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load Decrease intestinal overgrowth, reduce sugars, fiber supplements and consider antibiotics in very high levels confirmed in other bacterial overgrowth markers		
Muscle Assessment			
Gut Assessment	Vitamin B6 (pyridoxine), investigate insulin resistance Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load Decrease intestinal overgrowth, reduce sugars, fiber supplements and consider antibiotics in very high levels confirmed in other bacterial overgrowth markers Folic Acid, Histidine (Beef, Turkey, Chicken, Bananas, Broccoli, Cauliflower, Corn) 5-HTP		

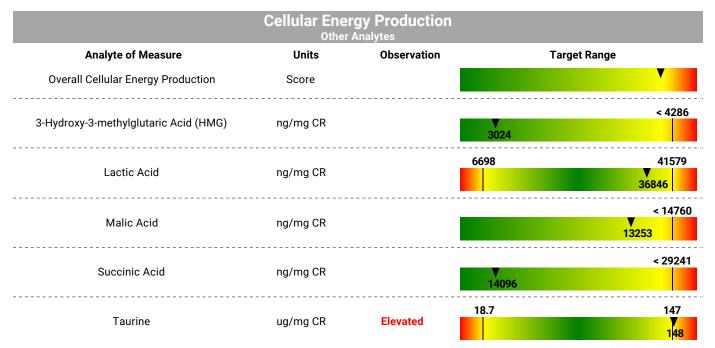


Summary Report			
Assessment Score Good, Fair, Poor	Potential Intervention	Practitioner Recommendation	
Essential Amino Acids	Vitamin B6 (pyridoxine), investigate insulin resistance Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load Folic Acid, Histidine (Beef, Turkey, Chicken, Bananas, Broccoli, Cauliflower, Corn) 5-HTP		
Non-Essential Amino Acids			

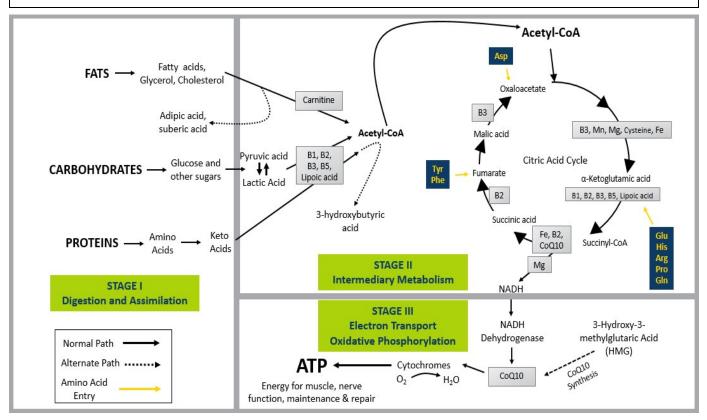



Most of the body's energy is generated from burning fatty acids in the citric acid cycle within the mitochondria. Carnitine is required for the shuttling of fatty acids into the mitochondria. When carnitine is deficient, fatty acids are converted to adipic acid and suberic acid. When B2 is lacking, elevations will be seen in adipic, suberic and succinic acids.


Function	Possible Causes	Complications	Recommendations
Adipic Acid - Fatty Acid Metabolism Suberic Acid - Fatty Acid Metabolism	Adipic/Suberic acid elevations caused by inability to shuttle fatty acids into the mitochondria or CAC disruptions		Carnitine (Pumpkin Seeds, Sunflower Seeds, Sesame Seeds, Legumes, Peas, Lentils, Mushrooms, Avocados, Carrots, Apricots, Bananas, Grains, Red Meat), lysine (if lysine is low)and Vitamin B2 (if adipic, suberic and succinic acids are elevated).



Pyruvic Acid is a precursor to Acetyl-CoA at the top of the citric acid cycle (CAC), however, when cofactors B1, B2, B3 and B5 are deficient, pyruvic acid cannot oxidize to Acetyl-CoA and will start to accumulate. Lactate will also accumulate in this state because lactic acid increases as pyruvic acid increases in these cases. Lactic acid can also increase when CoQ10 deficiencies exist. When this happens pyruvate will be much lower than lactic acid and HMG will elevate as well. 3-Hydroxybutyric Acid is a keto acid and can become elevated during very low calorie diets, fasting and/or in patients with diabetes.



Function	Possible Causes	Complications	Recommendations

The remaining analytes are associated with other areas of the citric acid cycle and can indicate certain cofactor deficiencies. When succinic acid or HMG levels are elevated, this is an indication of a CoQ10 deficiency. This can be further confirmed when malic acid is low (also associated with CoQ10 deficiency). When succinic acid is elevated without increases in HMG, this can indicate a lack of riboflavin (B2) and/or magnesium. When both malic acid and HMG are elevated, this is an indication of defects in the electron transport chain that are not associated with CoQ10 deficiency. Taurine is a conditionally essential amino acids that can be synthesized by cysteine when B6 levels are adequate. Vegetarian diets may have low levels of taurine and should supplement with B6 and taurine.

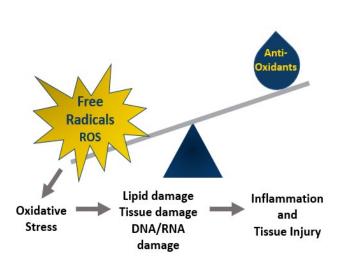
Cellular Energy Production - Other Analytes				
Function	Possible Causes	Complications	Recommendations	
 Taurine - An antioxidant with roles in energy production, protein synthesis, osmoregulation, membrane stabilization, and modulation of calcium signaling. It is essential for cardiovascular function, as well as development and function of skeletal muscle, the retina, and the central nervous system. 	Taurine is a conditionally essential amino acids that can be synthesized by cysteine when Vitamin B6 levels are adequate. Elevated levels can indicate liver issues or muscle damage but are usually associated with high-taurine diets. Taurine is also influenced by genetic SNPs of the CBS C699T gene.	Muscle damage, Inflammation, cardiovascular and neurological effects in addition to fatigue	• Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ11 (Salmon, Sardines, Mackere Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load	

B Vitamins are essential cofactors in almost every step of energy production, protein synthesis, detoxication and metabolism. B vitamins are responsible for decarboxylation, redox reactions, acting as carriers for acyl groups, metabolism of amino acids, carriers for methyl groups in methylation and many other functions in the human body. The markers analyzed in this section indicate which Vitamins, minerals and cofactors are needed to maintain the various pathways and cycles associated with B-Vitamin functionality.

B-Vitamin/Methylation Cofactor Assessment

Abbr.	Name	Function	Dietary Sources
B1	Thiamine	Energy metabolism, collagen synthesis, nervous system, thyroid function	Liver, meat, whole grains zucchini, beans, lentils, peas
B2	Riboflavin	Energy metabolism, antioxidant, heme formation, nervous system	Liver, meat, dairy/eggs, cruciferous veg, mushrooms, spinach
В3	Niacin	Energy metabolism, brain/concentration, DNA synthesis, skin and mucosal membrane	Liver, meat, fish, mushrooms, peanuts, kale, beans, lentils, peas, asparagus
В5	Pantothenic acid	Energy metabolism, cholesterol, hormones, immune system, mucous membrane, skin and nails, connective tissue.	Liver, meat, herring, nuts, dairy/eggs, mushrooms, beans, lentils, peas
В6	Pyridoxine	Energy metabolism, homocysteine metabolism, immune system, nervous system, brain/mental performance	Liver, meat, fish, nuts, cruciferous veg, carrots, potato, beans, lentils, peas
В7	Biotin	Energy metabolism, cholesterol, hormone, DNA and protein synthesis, homocysteine metabolism, skin, hair, nails and blood glucose regulation	Liver, meat, dairy/eggs, soybeans, peas, oysters
В9	Folic acid / folate	Heme formation, cell proliferation, homocysteine metabolism	Liver, meat, cruciferous veg, bran, green veg, dairy/eggs
B12	Cobalamin	Energy metabolism, homocysteine metabolism, nervous system, DNA synthesis, cell proliferation, heme formation	Liver, meat, fish, mussels

Function	Function Possible Causes Complications		Recommendations	
Homocystine - Although each of these analytes has its own function, in this section, each analyte is for the purpose of identifying vitamin B sufficiency. 2-Aminobutyric Acid - Although each of these analytes has its own function, in this section, each analyte is for the purpose of identifying vitamin B sufficiency.	elevated with normal methylmalonic acid, Vitamin B6 or Folate is recommended. Homocystine is inversely correlated with Folate, and Vitamin B12 in blood so as these are increased (through	Increases in Homocystine are associated with osteoporosis and central nervous system disorders and increased risk of atherosclerosis, cardiovascular disease, ocular, muscular, neurological and joint complications.	Vitamins B12 (cobalamin), B6 (pyridoxine), Folic Acid, Betaine (Whole Wheat, Wheat Bran, Wheat Germ, Spinach, Beetroot, Broccoli, Spinach), Magnesium (Green leafy Vegetables, Spinach, Sunflower Seeds, Sesame Seeds, Paprika, Ginger, Onion, Kelp) or methyl donors (with elevated MMA all of the above)	



Oxidative stress is a condition that results in increasing levels of free radicals that create an environment of increasing cellular damage over normal cellular function. While cellular damage is always present, antioxidants act as scavengers of reactive oxygen species (ROS) and free-radicals to maintain a balance between cellular function and cellular damage. The markers analyzed in this section are either indicative of oxidative stress or assess cofactors and recovery mechanisms required to maintain the normal flow of mitochondrial respiration (the greatest source of ROS). Additionally, certain gut dysbiosis and other inflammatory markers are included in this section due to the ability for oxidative stress to cause inflammatory responses and gut disturbances as well.

Inflammation and Oxidative Stress

Although some oxidative stress is required for cell signaling and regulating certain immune responses, oxidative stress is a general term to define the damage that arises from an excess of free radicals in relative ratio to the capacity of antioxidant defenses. Oxidative stress effects a number of pathways and tissues but it primarily marked in lipids, proteins and nucleic acids resulting in systemic tissue injury and/or inflammation.

Antioxidants			
Endogenous	Exogenous		
Glutathione	Vitamins A, C, K, E		
Thioredoxin (TRX)	Phenolic Acids resveratrol, curcumin		
Ubiquinone	Ubiquinone		
Uric acid	Beta-carotene		
Lipoic Acid	Flavonoids		
Bilirubin	Quercetin		
Catalase			
Superoxide dismutase (SOD)			
Glutathione peroxidase			

Function	Possible Causes	Complications	Recommendations
8-OH-dG - Indicator of oxidative damage to DNA Allantoin - Stimulates the growth of healthy tissue (specifically skin and mucous membranes). Biomarker of oxidative stress in chronic illnesses Hippuric Acid - A product of benzoic acid and glycine Melatonin - Regulator of the sleep-wake cycle. Taurine - An antioxidant with roles in energy production, protein synthesis, osmoregulation, membrane stabilization, and modulation of calcium signaling. It is essential for cardiovascular function, as well as development and function of skeletal muscle, the retina, and the central nervous system.	the inflammatory response which can aid in healing. Elevated hippuric acid indicate intestinal overgrowth of bacteria and gut inflammation. Melatonin is usually elevated when taking a melatonin but can be associated with rare	Oxidative stress, DNA damage, aging Overgrowth of bacteria and gut inflammation Muscle damage, Inflammation, cardiovascular and neurological effects in addition to fatigue	 Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load Decrease intestinal overgrowth, reduce sugars, fiber supplements and consider antibiotics in very high levels confirmed in other bacterial overgrowth markers

Inflammation and Oxidative Stress

Function	Possible Causes	Complications	Recommendations
3-Aminoisobutyric Acid - Indicator of a catabolic pathway resulting from DNA and RNA degradation	Taurine is a conditionally essential amino acids that can be synthesized by cysteine when Vitamin B6 levels are adequate. Elevated levels can indicate liver issues or muscle damage but are usually associated with high-taurine diets. Taurine is also influenced by genetic SNPs of the CBS C699T gene.		

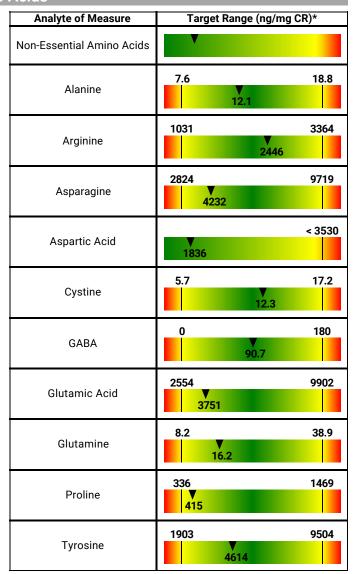
	Muscle A	ssessment		
Analyte of Measure	Units	Observation	Target Range	
Muscle Assessment	Score		▼ H	
1-Methyl-Histidine	ug/mg CR	Low	57 4 <mark>7.4</mark>	104
3-Aminoisobutyric Acid	ng/mg CR	Low	2563 1441	10703
3-Methyl-Histidine	ug/mg CR		47.2 103	300
5-Hydroxylysine	ng/mg CR	Low	647 519	4892
Anserine	ng/mg CR		2486	37185
Beta-Alanine	ng/mg CR		V 194	< 1489
Carnosine	ng/mg CR		1866	10188
Citrulline	ng/mg CR		148 V 189	595
Hydroxyproline	ng/mg CR		431 651	3060
Ornithine	ng/mg CR		516 V 867	1715
Proline	ng/mg CR		336 415	1469

The markers in this section fall into one of the following two categories; markers of damage and degradation of muscle or markers that contribute to muscle repair and healing. Indicators of muscle damage include 1-Methyl-Histidine, 3-Aminoisobutyric Acid, 3-Methyl-Histidine, 5-Hydroxylysine, Anserine, Citrulline and Ornithine. Beta-alanine, Carnosine, Proline and Hydroxyproline fall into the repair and healing category.

Damage & Injury Markers

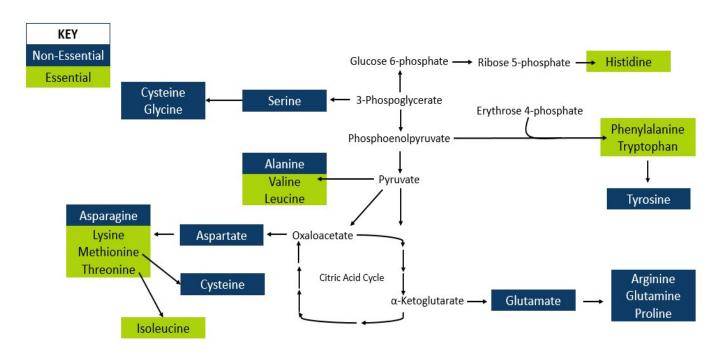
Ornithine
Citrulline
5-Hydroxylysine
3 & 1-Methyl-Histidines
3-Aminoisobutyric Acid

Maintenance & Healing Markers


Beta-Alanine Carnosine Anserine Hydroxyproline

Function	Possible Causes	Complications	Recommendations
1-Methyl-Histidine - Metabolic indicator or meat consumption (specifically red meat) 3-Aminoisobutyric Acid - Biomarker for skeletal muscle injury 5-Hydroxylysine - Biomarker for bone loss and connective tissue degradation	1-methyl-histadine is expected to be low in vegetarians as it is mainly derived from the hydrolysis of anserine in meat and chicken.		

Amino Acids


Analyte of Measure	Target Range (ng/mg CR)*
Essential Amino Acids	
Histidine	35.4 100 V 32,3
Isoleucine	180 1162
Leucine	246 2568 V 540
Lysine	3.7 17.1 5.4
Methionine	56.1 606 162
Phenylalanine	1931 5404 2658
Taurine	18.7 147 148
Threonine	2.5 11.4
Tryptophan	2928 7367 V 2749
Valine	740 3274 780

Amino acids are the direct transcription of DNA and are critical to virtually every function in the human body. Due to the nature of amino acid synthesis and the purposes carried out by these protein-building blocks, when amino acids increase or decrease in urine, pathway interruptions and dysfunctions can be identified and corrected through amino acid replacement or replacing a missing cofactor involved in the amino acid metabolic pathway. There are about 20 amino acids that can be broken into 2 main categories; Essential and Non-essential Amino Acids. The human body used to create all amino acids in the presence of the appropriate vitamin/nutrient cofactors, however, over time, genetic mutations related to amino acid production and transport led to the separation of non-essential amino acids made by the body and essential amino acids ingested from diet. Essential amino acids must be ingested to meet daily demands because they either cannot be created by the body (essential) or cannot be created at levels high enough to meet the daily requirements (conditionally essential). Non-essential amino acids are created within the human body and therefore their source is not dietary. Note: Conditionally essential amino acids are often listed with essential amino acids as these amino acids can be both created in the body and ingested in the diet. (*) The following amino acids are in ug/mg CR units; Essential AA: Histidine, Lysine, Taurine & Threonine; Non-Essential AA: Alanine, Cystine, Glutamine.

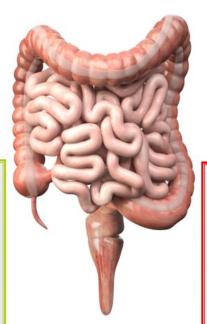
Amino Acids

Function	Possible Causes	Complications	Recommendations
 Isoleucine - Increase energy levels and assist in recovery from strenuous physical activity. Taurine - An antioxidant with roles in energy production, protein synthesis, osmoregulation, membrane stabilization, and modulation of calcium signaling. It is essential for cardiovascular function, as well as development and function of skeletal muscle, the retina, and the central nervous system. Histidine - Maintaining normal pH of 7 and also contributes to hemoglobin production 	When BCAAs, such as Leucine, Isoleucine or Valine are elevated in urine, this is generally and indication of a deficit in cofactor Vitamin B6 or the cofactors required for the branched-chain ketoacid dehydrogenase complex (BCKDC) such as thiamin, thiamin pyrophosphate, riboflavin, niacin, pantothenic acid and Lipoic acid.	 Insulin resistance Muscle damage, Inflammation, cardiovascular and neurological effects in addition to fatigue Rheumatoid arthritis Low tryptophan is associated with disorders such as insomnia, depression, anxiety, bipolar disorder and migraines 	 Vitamin B6 (pyridoxine), investigate insulin resistance Zinc, antioxidants (vitamins A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, Spinach, Beef Heart, Pork Heart, Chicken, Sesame Seeds), lipoic acid (Spinach, Broccoli, Sweet Potatoes, Potatoes, Yeast, Tomatoes, Peas, Brussel Sprouts, Carrots, Beets, Rice Bran), decrease oxidant load Folic Acid, Histidine (Beef, Turkey, Chicken, Bananas, Broccoli, Cauliflower, Corn) 5-HTP

Amino Acids

Function	Possible Causes	Complications	Recommendations
Tryptophan - Amino acid required to produce niacin, melatonin, and serotonin. Tryptophan metabolism is a key modulator of gut microbiota. Tryptophan metabolism is a key modulator of gut microbiota.	 Taurine is a conditionally essential amino acids that can be synthesized by cysteine when Vitamin B6 levels are adequate. Elevated levels can indicate liver issues or muscle damage but are usually associated with high-taurine diets. Taurine is also influenced by genetic SNPs of the CBS C699T gene. Low histidine is often due to low dietary intake, rheumatoid arthritis, decreases in folic acid (needed for production and metabolism) When tryptophan is low, serotonin levels drop. Serotonin can be rescued through the use of 5-HTP which is the intermediary between Tryptophan and serotonin. Tryptophan is also required for protein synthesis (which cannot be replaced by the use of 5-HTP) so tryptophan replacement in a balanced amino acid supplement can increase both tryptophan and serotonin. Take caution when using 5-HTP or Tryptophan isolate in patients taking SSRIs. Tryptophan is also influenced by genetic SNPs of the IDO1 gene. 		

The gut is the central center for overall health and balance. This is evident through the observation that the gut consumes about 1/3 of the energy produced daily and is the only organ system that has its own nervous and lymphatic system. The markers analyzed in this section are related to bacterial overgrowth or gut dysbiosis which can compromise the lining of the gastrointestinal (GI) tract. When the lining of the GI tract is compromised, certain nutrients can "leak" out of the gut instead of going into the bloodstream. When this happens, the nutrients intended to support energy production, protein synthesis, and other key functions are not efficiently absorbed (often causing deficiencies) and the body launches an immune response to address the overgrowth of GI bacteria, as well as, any nutrients, etc. that have leaked outside of the gut. This immune response leads to inflammation which, when left untreated, can cascade into many other disfunctions and disorders.


Gut Assessment

Positive Contributors

- Probiotic Balance though diet and/or supplements
- · Dietary fiber intake
- Regular Exercise
- Proper Sleep
- Appropriate cofactors

Healthy Gut Responses

- Increased short-chain fatty acid production
- Increased antioxidant production
- Improved lipid metabolism
- Improved insulin sensitivity
- Improved detoxification
- Decreased risk of infections, cardiovascular disease and other systemic and inflammatory diseases
- · Decreased risk of gut inflammation

Negative Contributors

- Antibiotics
- Bacterial overgrowth/imbalance/dysbiosis
- Proton pump inhibitors
- High fat diet (saturated fats)
- High protein diet
- Altered pH
- Increased sugar intake (fructose)

Unhealthy Gut Responses

- Decreased short-chain fatty acids
- Insulin resistance
- Increased Lipopolysaccharides
- Increased risk of cardiovascular disease and other systemic & inflammatory diseases
- Gut inflammation
- Cognitive decline
- · Increased sensitivity to allergens

Function Possible Causes Complications Recommendations Acetoacetic Acid - Ketone Acetoacetic acid elevation -Poor metabolism leading to Vitamin B6 (pyridoxine), bodies, mainly β-These levels will increase in excessive fatty acid investigate insulin breakdown (diabetes hydroxybutyrate and fasting conditions and in resistance acetoacetic acid. are response to Type II diabetes. mellitus leading to diabetic Zinc, antioxidants (vitamins important alternative energy Allantoin, is a biomarker of ketoacidosis) A, E, C, beta-carotene, CoQ10 (Salmon, Sardines, Mackerel, sources in a state of energy oxidative stress and is the Oxidative stress, DNA damage, aging deficit or metabolic crisis. predominant product of free Spinach, Beef Heart, Pork Allantoin - Stimulates the radical-induced oxidation of Overgrowth of bacteria and Heart, Chicken, Sesame growth of healthy tissue uric acid. Some studies note gut inflammation Seeds), lipoic acid (Spinach, (specifically skin and allatoin ability to modulate Rheumatoid arthritis Broccoli, Sweet Potatoes. Low tryptophan is associated mucous membranes). the inflammatory response Potatoes, Yeast, Tomatoes, which can aid in healing. with disorders such as Biomarker of oxidative Peas, Brussel Sprouts, Elevated hippuric acid stress in chronic illnesses insomnia, depression, Carrots, Beets, Rice Bran), Hippuric Acid - A product of indicate intestinal anxiety, bipolar disorder and decrease oxidant load benzoic acid and glycine overgrowth of bacteria and migraines Decrease intestinal Histidine - Maintaining gut inflammation. overgrowth, reduce sugars. Low histidine is often due to normal pH of 7 and also fiber supplements and contributes to hemoglobin low dietary intake, consider antibiotics in very production rheumatoid arthritis, high levels confirmed in Tryptophan - Amino acid decreases in folic acid other bacterial overgrowth required to produce niacin, (needed for production and markers melatonin, and serotonin. metabolism) Folic Acid, Histidine (Beef, Turkey, Chicken, Bananas, Tryptophan metabolism is a key modulator of gut Broccoli, Cauliflower, Corn) 5-HTP microbiota.

Gut Assessment

Function	Possible Causes	Complications	Recommendations
	When tryptophan is low, serotonin levels drop. Serotonin can be rescued through the use of 5-HTP which is the intermediary between Tryptophan and serotonin. Tryptophan is also required for protein synthesis (which cannot be replaced by the use of 5-HTP) so tryptophan replacement in a balanced amino acid supplement can increase both tryptophan and serotonin. Take caution when using 5-HTP or Tryptophan is olate in patients taking SSRIs. Tryptophan is also influenced by genetic SNPs of the IDO1 gene.		

4850 T-Rex Avenue ▼ Suite 150 ▼ Boca Raton, FL 33431

© 2019 Physicians Lab, Inc. 2020-03-13